中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120632 Previous Articles   Next Articles

• Review •

Interfacial Self-Assembly of Viologen-Functionalized Ultrathin Films and Molecular Aggregates

Qian Dongjin*, Fu Yanrong   

  1. Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 1284 ) Cited
Export

EndNote

Ris

BibTeX

Viologens are a group of electroactive organic electrolytes and generally change from colorless to blue or violet after the first reductive reaction, thus they have attracted much attention in the fields of chemically modified electrodes, electrochromic display and supramolecular devices. The alkyl substituents in the viologens are easily functionalized (oxosilane or thiol), resulting in the as-prepared viologens suitable for potential candidates to construct well-defined thin films, multilayers or molecular aggregates by the bottom-up techniques, such as the Langmuir-Blodgett (LB) films, self-assembled monolayers (SAMs) and layer-by-layer (LBL) assembly. If the alkylated substituents contain a thiol or silane substituent, the viologens produced can form SAMs on the solid surfaces, while if they are long alkyl chains, the amphiphilic viologens can form stable insoluble monolayers at the air-water interface and be deposited on the substrate surfaces to form the LB films. The poly(viologen) derivatives can form LBL multilayers with negatively charged polyelectrolytes or nanostructural materials including carbon nanotubes. This paper reviews recent developments in the design and assembly of viologen-functionalized supramolecular and nanoscale materials by the molecular assembling methods. The optical and electrochemical properties of viologens in the molecular assemblies are discussed together with their potential applications as electron mediators for the electron donors, light-harvesting units and proteins. Contents
1 Introduction
2 Synthesis of viologens
2.1 Viologen organics
2.2 Poly(viologen) derivatives
3 Interfacial assembly of viologen-functinalized ultrathin films and aggregates
3.1 Langmuir-Blodgett films of amphiphilic viologens
3.2 Self-assembled monolayers of viologens
3.3 Layer-by-layer assembly of poly(viologen) derivatives
4 Conclusion and remarks

CLC Number: 

[1] Rosseinsky D R, Mortimer R J. Adv. Mater., 2001, 13(11): 783-793
[2] 曹良成(Cao L C), 王跃川(Wang Y C). 化学进展 (Progress in Chemistry), 2008, 20(9): 1354-1360
[3] Bird C L, Kuhn A T. Chem. Soc. Rev., 1981, 10(1): 49-82
[4] Shin S R, Lee C K, Kim S I, So I, Spinks G M, Wallace G G, Kim S J. Langmuir, 2008, 24(7): 3562-3565
[5] Mortimer R J, Dyer A L, Reynolds J R. Displays, 2006, 27(1): 2-18
[6] Sandanayakaa A S D, Ito O. J. Porphyrins Phthalocyanines, 2009, 13(10): 1017-1033
[7] Asakura N, Hiraishi T, Kamachi T, Okura I. J. Mol. Catal. A-Chem., 2001;172(1/2): 1-7
[8] Amao Y, Hirakawa T. Int. J. Hydrogen Energ., 2010, 35(13): 6624-6628
[9] De Long H C, Buttry D A. Langmuir, 1990, 6(7): 1319-1322
[10] Yonemoto E H, Riley R L, Kim Y I, Atherton S J, Schmehl R H, Mallouk T E. J. Am. Chem. Soc., 1992, 114(21): 8081-8087
[11] Nishijima T, Nagamura T, Matsuo T. J. Polym. Sci.: Polym. Lett. Ed., 1981, 19(2): 65-73
[12] Cheng K C, Chen P Y. Electroanalysis, 2008, 20(2): 207-210
[13] Matsuo T, Sakamoto T, Takuma K, Sakura K, Ohsako T. J. Phys. Chem., 1981, 85(10): 1277-1279
[14] Liu A, Han S, Che H, Hua L. Langmuir, 2010, 26(5): 3555-3561
[15] Wassel R A, Fuierer R R, Kim N, Gorman C B. Nano Lett., 2003, 3(11): 1617-1620
[16] Moon K, Kaifer A E. Org. Lett., 2004, 6(2): 185-188
[17] Ong W, Kaifer A E. J. Org. Chem., 2004, 69(4): 1383-1385
[18] Ong W, Grindstaff J, Sobransingh D, Toba R, Quintela J M, Peinador C, Kaifer A E. J. Am. Chem. Soc., 2005, 127(10): 3353-3361
[19] Cea P, Lafuente C, Urieta J S, López M C, Royo F M. Langmuir, 1998, 14(25): 7306-7312
[20] Martín S, Cea P, Lafuente C, Royo F M, López Ma C. Surface Science, 2004, 563(1/3): 27-40
[21] Martín S, Villares A, Haro M, López M C, Cea P. J. Electroanal. Chem., 2005, 578(2): 203-211
[22] Qian D J, Nakamura C, Miyake J. Thin Solid Films, 2000, 374(1): 125-133
[23] Fernández A, Martín M, Ruiz J, Muñoz E, Camacho L. J. Phys. Chem. B, 1998, 102(35): 6799-6803
[24] Fernandez A J, Ruiz J J, Camacho L, Martin M T, Munoz E. J. Phys. Chem. B, 2000, 104(23): 5573-5578
[25] Lozano P, Fernández A, Ruiz J, Camacho L, Martín M, Muñoz E. J. Phys. Chem. B, 2002, 106(25): 6507-6514
[26] Qian D J, Nakamura C, Miyake J. Colloids Surf. A: Physicochem Eng. Aspects., 2000, 175(1/2): 93-98
[27] Zhang S S, Wang H L, Chen M, Qian D J. Colloids Surf. A: Physicochem. Eng. Aspects, 2011, 384(1/3): 561-569
[28] Fu Y R, Zhang S S, Chen M, Qian D J. Thin Solid Films, 2012, 520(23): 6994-7001
[29] Qian D J, Nakamura C, Zorin N, Miyake J. Colloids Surf. A: Physicochem. Eng. Aspects, 2002, 198: 663-669
[30] Tang X, Schneider T W, Walker J W, Buttry D A. Langmuir, 1996, 12(24): 5921-5933
[31] John S A, Kasahara H, Okajima T, Tokuda K, Ohsaka T. J. Electroanal. Chem., 1997, 436(1/2): 267-270
[32] John S A, Okajima T, Ohsaka T. J. Electroanal. Chem., 1999, 466(1): 67-74
[33] John S A, Kitamura F, Tokuda K, Ohsaka T. Electrochim. Acta, 2000, 45(24): 4041-4048
[34] John S A, Ohsaka T. J. Electroanal. Chem., 1999, 477(1): 52-61
[35] Nakamura N, Huang H X, Qian D J, Miyake J. Langmuir, 2002, 18(15): 5804-5809
[36] Li J, Yan J, Deng Q, Cheng G, Dong S. Electrochim. Acta, 1997, 42(6): 961-967
[37] Kafi A K M, Lee D Y, Park S H, Kwon Y S. Microchem. J., 2007, 85(2): 308-313
[38] Lee N S, Shin H K, Qian D J, Kwon Y S. Thin Solid Films, 2007, 515(12): 5163-5166
[39] Lee N S, Choi W S, Shin H K, Qian D J, Kwon Y S. Ultramicroscopy, 2008, 108(10): 1101-1105
[40] Bagrets A, Arnold A, Evers F. J. Am. Chem. Soc., 2008, 130(28): 9013-9018
[41] Lee N S, Shin H K, Kwon Y S, Lee B J. Ultramicroscopy, 2010, 110(6): 650-654
[42] Nitahara S, Terasaki N, Akiyama T, Yamada S. Thin Solid Films, 2006, 499(1/2): 354-358
[43] Masuda T, Shimazu K, Uosaki K. J. Phys. Chem. C, 2008, 112(29): 10923-10930
[44] Oo L, Kitamura F. J. Electroanal. Chem., 2008, 619/620: 187-192
[45] Hyung K H, Noh J, Lee W, Han S H. J. Phys. Chem. C, 2008, 112(46): 18178-18182
[46] Asaftei S, Rosemeyer H, Walder L. Langmuir, 2008, 24(11): 5641-5643
[47] Qian D J, Nakamura C, Noda K, Zorin N A, Miyake J. Appl. Biochem. Biotech., 2000, 84/86: 409-418
[48] Zhang X, Chen H, Zhang H Y. Chem. Commun., 2007, (14): 1395-1405
[49] Wan P B, Eric H H, Zhang X. Prog. Chem., 2012, 24(1): 1-7
[50] Laurent D, Schlenoff J B. Langmuir, 1997, 13(6): 1552-1557
[51] Li L S, Li A D Q. J. Phys. Chem. B, 2001, 105(41): 10022-10028
[52] Zacharia N S, De Longchamp D M, Modestino M, Hammond P T. Macromolecules, 2007, 40(5): 1598-1603
[53] Huang H X, Qian D J, Nakamura N, Nakamura C, Wakayama T, Miyake J. Electrochim. Acta, 2004, 49(9/10): 1491-1498
[54] Chen G P, Wang X, Liu A R, Qian D J. Mat. Sci. Eng. C-Bio. S., 2009, 29(3): 925-929
[55] Wang X, Huang H X, Liu A R, Liu B, Wakayama T, Nakamura C, Miyake J, Qian D J. Carbon, 2006, 44(11): 2115-2121
[56] De Longchamp D M, Kastantin M, Hammond P T. Chem. Mater., 2003, 15(8): 1575-1586
[57] Jain V, Khiterer M, Montazami R, Yochum H M, Shea K J, Heflin J R. ACS Appl. Mater. Interfaces., 2009, 1(1): 83-89
[58] Kaschak D M, John T, Waraksa C C, Saupe G B, Usami H, Mallouk T E. J. Am. Chem. Soc., 1999, 121(14): 3435-3445
[59] Abdelrazzaq F B, Kwong R C, Thompson M E. J. Am. Chem. Soc., 2002, 124(17): 4796-4803
[60] Boubbou K H, Ghaddar T H. Langmuir, 2005, 21(19): 8844-8851
[61] Saab M A, Abdel-Malak R, Wishart J F, Ghaddar T H. Langmuir, 2007, 23(21): 10807-10815
[62] Liu J, Chen M, Qian D J. Langmuir, 2012, 28(25): 9496- 9505

[1] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[2] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[3] Bian Yinghui, Dong Xujing, Zhu Lijun, Zhou Yulu, Xiang Yuzhi, Xia Daohong. Supramolecular Interaction of Petroleum Components and Model Compounds [J]. Progress in Chemistry, 2013, 25(08): 1260-1271.
[4] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[5] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[6] Wen Yanli, Lin Meihua, Pei Hao, Lu Na, Fan Chunhai. Electrochemical-Based MicroRNA Sensors [J]. Progress in Chemistry, 2012, (9): 1656-1664.
[7] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[8] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[9] Wang Juan, Liu Ying, Zhang Weide. Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites [J]. Progress in Chemistry, 2011, 23(8): 1583-1590.
[10] Lu Lin, Li Xiaogang, Gao Jin. Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate [J]. Progress in Chemistry, 2011, 23(8): 1618-1626.
[11] Zhao Dan, Wang Yan, Zhao Min. Bioelectrochemistry of Laccase [J]. Progress in Chemistry, 2011, 23(6): 1224-1236.
[12] Shao Na, Zhang Xiangyuan, Yang Ronghua. Applications of Spiropyran Derivatives in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(5): 842-851.
[13] Chen Yiting, Huang Lu, Lin Qi. The Application of Heated Electrodes in Electrochemical Sensors [J]. Progress in Chemistry, 2011, 23(11): 2377-2388.
[14] Tu Wenwen, Lei Jianping, Ju Huangxian. Nanoassembly and Biosensing of Porphyrins [J]. Progress in Chemistry, 2011, 23(10): 2113-2118.
[15] Guo Yan Ni Wenbin Zhao Jianwei. Understanding the Microscopic Structure of the Electrochemically Active Group from Surface Electrochemistry [J]. Progress in Chemistry, 2009, 21(6): 1149-1153.