中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120630 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Elevated-Temperature Electrolytes for Li-Ion Batteries

Yin Chengguo, Ma Yulin*, Cheng Xinqun, Yin Geping   

  1. School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
PDF ( 2307 ) Cited
Export

EndNote

Ris

BibTeX

Research progress and prospects of electrolytes used at elevated-temperature for lithium-ion batteries are summarized in this paper. The deficiency of current commercial electrolytes at high temperature is clarified according to the chemical stability of solutes and solvents. Some ideas are proposed to develop the thermal stability of lithium salts, ionic liquids and flame retardant additives. The deficiencies of the present lithium salts can be overcome through the modification of functional group or the structure composite, and new kind of lithium salt can be developed for elevated-temperature lithium ion battery. Non-carbonic acid ester showed poor performance when it was used alone, ionic liquids showed poor compatibility with commonly used anode and cathode materials. The most possible way for the application of high-temperature electrolyte is the blend of carbonates and flame retardants. Better flame retardant can be achieved by introducing flame-retardant elements into phosphate ester or modifying part of the functional group, which will improve the performance of electrolyte in high temperature. Contents
1 Introduction
2 High thermal stability electrolyte salts
2.1 Boron-based lithium salts
2.2 Lithium imides
3 Non-flammable solvents
3.1 Non-flammable organic solvents
3.2 Room temperature ionic liquids
3.3 Flame retardant additives
4 Conclusion and outlook

CLC Number: 

[1] Taubert C, Fleischhammer M, Wohlfahrt-Mehrens M, Wietelmann U, Buhrmester T. J. Electrochem. Soc., 2010, 157 (6): A721-A728
[2] 仇卫华 (Qiu W H), 阎坤 (Yan K), 连芳 (Lian F), 乔亚非(Qiao Y F). 化学进展 (Progress in Chemistry), 2011, 23(02/3): 357-365
[3] Zhang S S. Electrochem. Commun., 2006, 8 (9): 1423-1428
[4] Li J, Xie K Y, Lai Y Q, Zhang Z A, Li F Q, Hao X, Chen X J, Liu Y X. J. Power Sources, 2010, 195 (16): 5344-5350
[5] Fu M H, Huang K L, Liu S Q, Liu J S, Li Y K. J. Power Sources, 2010, 195 (3): 862-866
[6] Morita M, Shibata T, Yoshimoto N, Ishikawa M. J. Power Sources, 2003, 119/121: 784-788
[7] Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M. J. Power Sources, 2011, 196 (22): 9743-9750
[8] Kaskhedikar N, Karatas Y, Cui G, Maier J, Wiemhofer H D. J. Mater. Chem., 2011, 21 (32): 11838-11843
[9] Mun J, Yim T, Choi C Y, Ryu J H, Kim Y G, Oh S M. Electrochem. Solid St., 2010, 13 (8): A109-A111
[10] Abouimrane A, Ding J, Davidson I J. J. Power Sources, 2009, 189 (1): 693-696
[11] Han H B, Zhou S S, Zhang D J, Feng S W, Li L F, Liu K, Feng W F, Nie J, Li H, Huang X J. J. Power Sources, 2011, 196 (7): 3623-3632
[12] Han H B, Guo J, Zhang D J, Feng S W, Feng W F, Nie J, Zhou Z B. Electrochem. Commun., 2011, 13 (3): 265-268
[13] Xu K. Chem. Rev., 2004, 104 (10): 4303-4417
[14] Huang J, Liu X, Kang X, Yu Z, Xu T, Qiu W. J. Power Sources, 2009, 189 (1): 458-461
[15] Ping P, Wang Q S, Sun J H, Feng X Y, Chen C H. J. Power Sources, 2011, 196 (2): 776-783
[16] Fan L Z, Xing T F, Awan R, Qiu W H. Ionics, 2011, 17 (6): 491-494
[17] Kinoshita S, Kotato M, Sakata Y, Ue M, Watanabe Y, Morimoto H, Tobishima S. J. Power Sources, 2008, 183 (2): 755-760
[18] Isken P, Dippel C, Schmitz R, Schmitz R W, Kunze M, Passerini S, Winter M, Lex-Balducci A. Electrochimica Acta, 2011, 56 (22): 7530-7535
[19] Abu-Lebdeh Y, Davidson I. J. Power Sources, 2009, 189 (1): 576-579
[20] Xu K, Angell C A. J. Electrochem. Soc, 2002, 149 (7): A920-A926
[21] Abouimrane A, Belharouak I, Amine K. Electrochem. Commun., 2009, 11 (5): 1073-1076
[22] Xiang J, Chen R J, Wu F, Li L, Chen S. Chem. J. Chinese U., 2011, 32 (6): 1231-1233
[23] Watanabe Y, Kinoshita S I, Wada S, Hoshino K, Morimoto H, Tobishima S I. J. Power Sources, 2008, 179 (2): 770-779
[24] Lewandowski A, S ' widerska-Mocek A. J. Power Sources, 2009, 194 (2): 601-609
[25] Bayley P M, Best A S, MacFarlane D R, Forsyth M. Phys. Chem. Chem. Phys., 2011, 13 (10): 4632-4640
[26] Cui W, An M, Yang P, Zhang J, Sun X. Journal of Harbin Institute of Technology, 2011, (05): 44-48
[27] Fu Y B, Chen C, Qiu C C, Ma X H. J. Appl. Electrochem., 2009, 39 (12): 2597-2603
[28] Peng C X, Yang L, Wang B F, Zhang Z X, Li N. Chinese Sci. Bull., 2006, 51 (23): 2824-2830
[29] Garcia W, Armand M. J. Power Sources, 2004, 132 (1/2): 206-208
[30] Garcia B, Lavallee S, Perron G, Michot C, Armand M. Electrochimica Acta, 2004, 49 (26): 4583-4588
[31] Egashira M, Todo H, Yoshimoto N, Morita M, Yamaki J. J. Power Sources, 2007, 174 (2): 560-564
[32] Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N. J. Phys. Chem. B, 2006, 110 (21): 10228-10230
[33] Zhou Q, Boyle P D, Malpezzi L, Mele A, Shin J H, Passerini S, Henderson W A. Chemistry of Materials, 2011, 23 (19): 4331-4337
[34] Salem N, Nicodemou L, Abu-Lebdeh Y, Davidson I J. J. Electrochem. Soc., 2012, 159 (2): A172-A176
[35] Reale P, Fernicola A, Scrosati B. J. Power Sources, 2009, 194 (1): 182-189
[36] Sakaebe H, Matsumoto H, Tsudzuki S, Tatsumi K. ECS Meeting Abstracts, 2009, 902 (8): 668-668
[37] Xiang H F, Yin B, Wang H, Lin H W, Ge X W, Xie S, Chen C H. Electrochimica Acta, 2010, 55 (18): 5204-5209
[38] An Y X, Zuo P J, Cheng X Q, Liao L X, Yin G P. Electrochimica Acta, 2011, 56 (13): 4841-4848
[39] Wang Q S, Sun J H, Yao X L, Chen C H. Electrochem. Solid St., 2005, 8 (9): A467-A470
[40] 陈仕玉 (Chen S Y), 王兆翔 (Wang Z X), 赵海雷 (Zhao H L), 陈立泉 (Chen L Q). 化学进展 (Progress in Chemistry), 2009, 21(04): 629-636
[41] Smart M C, Krause F C, Hwang C, West W C, Soler J, Prakash G K S, Ratnakumar B V. ECS Transactions, 2011, 35 (13): 1-11
[42] Zhou D Y, Li W S, Tan C L, Zuo X X, Huang Y J. J. Power Sources, 2008, 184 (2): 589-592
[43] Shim E G, Park I J, Nam T H, Kim J G, Kim H S, Moon S I. Met. Mater. Int., 2010, 16 (4): 587-594
[44] Xu K, Ding M S, Zhang S S, Allen J L, Jow T R. J. Electrochem. Soc., 2002, 149 (5): A622-A626
[45] Izquierdo-Gonzales S, Li W T, Lucht B L. J. Power Sources, 2004, 135 (1/2): 291-296
[46] Kim K, Ahn S, Kim H S, Liu H K. Electrochimica Acta, 2009, 54 (8): 2259-2265
[47] Xiang H F, Lin H W, Yin B, Zhang C P, Ge X W, Chen C H. J. Power Sources, 2010, 195 (1): 335-340
[48] Nam N, Park I, Kim J. Met. Mater. Int., 2012, 18 (1): 189-196
[49] Xiang H F, Wang Q, Wang D Z, Zhang D W, Wang H H, Chen C H. J. Appl. Electrochem., 2011, 41 (8): 965-971
[50] Xu K, Ding M S, Zhang S S, Allen J L, Jow T R. J. Electrochem. Soc., 2003, 150 (2): A161-A169
[51] Nam N D, Park I J, Kim J G, Kim H S. Mater. Res. Bull., 2012: 47(10): 2811-2814
[52] Xu H Y, Xie S, Wang Q Y, Yao X L, Wang Q S, Chen C H. Electrochimica Acta, 2006, 52 (2): 636-642
[53] Shim E G, Nam T H, Kim J G, Kim H S, Moon S I. J. Power Sources, 2008, 175 (1): 533-539
[54] Nam T H, Shim E G, Kim J G, Kim H S, Moon S I. J. Power Sources, 2008, 180 (1): 561-567
[55] Zhang S S, Xu K, Jow T R. J. Power Sources, 2003, 113 (1): 166-172
[56] Yao X L, Xie S, Chen C H, Wang Q S, Sun J H, Li Y L, Lu S X. J. Power Sources, 2005, 144 (1): 170-175
[57] Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Electrochem. Soc., 2010, 157 (6): A707-A712

[1] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[2] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[3] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[4] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[5] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[6] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[7] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[8] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[9] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[10] Wang Qian, Zhang Jingze, Lou Yuwan, Xia Baojia. Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate [J]. Progress in Chemistry, 2014, 26(11): 1772-1780.
[11] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.
[12] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[13] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[14] Chen Xu, He Daping, Mu Shichun. Nitrogen-Doped Graphene [J]. Progress in Chemistry, 2013, 25(08): 1292-1301.
[15] Liu Xin, Zhao Hailei, Xie Jingying, Tang Weiping, Pan Yanlin, Lü Pengpeng. Polymer Binders for High Capacity Electrode of Lithium-Ion Battery [J]. Progress in Chemistry, 2013, 25(08): 1401-1410.