中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120622 Previous Articles   

• Review •

Interactions Between Manufactured Nanomaterials and Plants: Phytotoxicity, Uptake and Translocation

Lv Jitao, Zhang Shuzhen*   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received: Revised: Online: Published:
PDF ( 1553 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development and wide application of nanotechnology in recent years, increasing amount of manufactured nanomaterials will inevitably enter the environment. The presence of nanomaterials in the environment can have negative effects on both environment and human health, which has been attracted much attention. Many studies have suggested the potential toxicity of manufactured nanomaterials to bacteria and aquatic and terrestrial animals and plants. Plants comprise a very important living component of terrestrial ecosystems. On one hand, nanomaterials will influence plant growth and development. On the other hand, plant metabolic activities will affect transformation and fate of nanomaterials in the environment as well as their transportation in food chain. However, up to now studies about the interactions between nanomaterials and plants have been largely ignored, and most of the publications are limited to explanations of phenomena observed. For example, the available studies on nano-phytotoxicity have focused mainly on toxicity symptoms of plants or plant cells, and failed to elucidate the mechanisms responsible for the phytotoxicity of nanomaterials, as well as the uptake, translocation and accumulations of nanomaterials by plants. Moreover, different or even opposite conclusions have been drawn from the researches. Therefore, it is necessary to have a systematic review of the available researches in this field. Here we present a comprehensive review of the studies about the interaction of nanomaterials and plants including the phytotoxicity of nanomaterials and the uptake and translocation of nanomaterials by plants at the whole plant and cellular levels. Contents
1 Introduction
2 Interactions of nanomaterials and plants
3 Effects of nanomaterials on plant growth
3.1 Carbon nanomaterials
3.2 Metal (oxide) nanomaterials
4 Uptake and translocation of nanomaterials by plants
4.1 Negative opinions on plant uptake of nano-materials
4.2 Positive opinions on plant uptake of nano-materials
5 Conclusions and perspectives

CLC Number: 

[1] 白春礼(Bai C L). 科学通报(Chinese Science Bulletin), 2001, 46: 89-92
[2] Masciangioli T, Zhang W X. Environ. Sci. Technol., 2003, 37: 102a-108a
[3] Nel A, Xia T, Madler L, Li N. Science, 2006, 311: 622-627
[4] Bai C L. Science, 2005, 309: 61-63
[5] Wiesner M R, Lowry G V, Alvarez P, Dionysiou D, Biswas P. Environ. Sci. Technol., 2006, 40: 4336-4345
[6] Robichaud C O, Tanzil D, Weilenmann U, Wiesner M R. Environ. Sci. Technol., 2005, 39: 8985-8994
[7] Service R F. Science, 2003, 300: 243-243
[8] Brumfiel G. Nature, 2003, 424: 246-248
[9] Colvin V L. Nat. Biotechnol., 2003, 21: 1166-1170
[10] Owen R, Handy R. Environ. Sci. Technol., 2007, 41: 5582-5588
[11] Lowry G V, Casman E A. Nato. Sci. Peace. Secur., 2009, 125-137
[12] Klaine S J, Alvarez P J J, Batley G E, Fernandes T F, Handy R D, Lyon D Y, Mahendra S, McLaughlin M J, Lead J R. Environ. Toxicol. Chem., 2008, 27: 1825-1851
[13] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17: 372-386
[14] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891-3914
[15] Nair R, Varghese S H, Nair B G, Maekawa T, Yoshida Y, Kumar D S. Plant Sci., 2010, 179: 154-163
[16] Ma X M, Geiser-Lee J, Deng Y, Kolmakov A. Sci. Total Environ., 2010, 408: 3053-3061
[17] Monica R C, Cremonini R. Caryologia, 2009, 62: 161-165
[18] Becker L. Science, 1994, 265: 1644-1644
[19] Murr L E, Esquivel E V, Bang J J, de la Rosa G, Gardea-Torresdey J L. Water Res., 2004, 38: 4282-4296
[20] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150: 5-22
[21] Hochella M F. Geochim. Cosmochim. Acta, 2002, 66: 735-743
[22] Rico C M, Majumdar S, Duarte-Gardea M, Peralta-Videa J R, Gardea-Torresdey J L. J. Agr. Food Chem., 2011, 59: 3485-3498
[23] Judy J D, Unrine J M, Bertsch P M. Environ. Sci. Technol., 2011, 45: 776-781
[24] Holbrook R D, Murphy K E, Morrow J B, Cole K D. Nat. Nanotechnol., 2008, 3: 352-355
[25] Gardea-Torresdey J L, Gomez E, Peralta-Videa J R, Parsons J G, Troiani H, Jose-Yacaman M. Langmuir, 2003, 19: 1357-1361
[26] Gardea-Torresdey J L, Parsons J G, Gomez E, Peralta-Videa J, Troiani H E, Santiago P, Yacaman M J. Nano Lett., 2002, 2: 397-401
[27] Manceau A, Nagy K L, Marcus M A, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T. Environ. Sci. Technol., 2008, 42: 1766-1772
[28] Haverkamp R G, Marshall A T. J. Nanopart. Res., 2009, 11: 1453-1463
[29] Mohanpuria P, Rana N K, Yadav S K. J Nanopart. Res., 2008, 10: 507-517
[30] Qu J, Yuan X, Wang X H, Shao P. Environ. Pollut., 2011, 159: 1783-1788
[31] USEPA 1996-Ecological effects test guidelines (OPPTS 850.4200) Seed Germination Root Elongation Toxicity Test. http: //www. epa. gov
[32] Khodakovskaya M V. P. Natl. Acad. Sci. USA, 2011, 108: 1028-1033
[33] Lin D H, Xing B S. Environ. Pollut., 2007, 150: 243-250
[34] Stampoulis D, Sinha S K, White J C. Environ. Sci. Technol., 2009, 43: 9473-9479
[35] Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z R, Watanabe F, Biris A S. ACS Nano, 2009, 3: 3221-3227
[36] Canas J E, Long M Q, Nations S, Vadan R, Dai L, Luo M X, Ambikapathi R, Lee E H, Olszyk D. Environ. Toxicol. Chem., 2008, 27: 1922-1931
[37] Liu Q L, Zhao Y Y, Wan Y L, Zheng J P, Zhang X J, Wang C R, Fang X H, Lin J X. ACS Nano, 2010, 4: 5743-5748
[38] Lin S J, Reppert J, Hu Q, Hudson J S, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Small, 2009, 5: 1128-1132
[39] Lin C, Fugetsu B, Su Y, Watari F. J. Hazard. Mater., 2009, 170: 578-583
[40] Wei L P, Thakkar M, Chen Y H, Ntim S A, Mitra S, Zhang X Y. Aquat. Toxicol., 2010, 100: 194-201
[41] Tan X M, Lin C, Fugetsu B. Carbon, 2009, 47: 3479-3487
[42] Tan X M, Fugetsu B. J. Biomed. Nanotechnol., 2007, 3: 285-288
[43] Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. J. Hazard. Mater., 2011, 197: 327-336
[44] Shen C X, Zhang Q F, Li J A, Bi F C, Yao N. Am. J. Bot., 2010, 97: 1602-1609
[45] Khodakovskaya M V, Silva K D, Biris A S, Dervishi E, Villagarcia H. ACS Nano, 2012, 6: 2128-2135
[46] Ma Y H, Kuang L L, He X, Bai W, Ding Y Y, Zhang Z Y, Zhao Y L, Chai Z F. Chemosphere, 2010, 78: 273-279
[47] Lopez-Moreno M L, de la Rosa G, Hernandez-Viezcas J A, Castillo-Michel H, Botez C E, Peralta-Videa J R, Gardea-Torresdey J L. Environ. Sci. Technol., 2010, 44: 7315-7320
[48] Gao F Q, Liu C, Qu C X, Zheng L, Yang F, Su M G, Hong F H. Biometals, 2008, 21: 211-217
[49] Yang F, Liu C, Gao F Q, Su M Y, Wu X, Zheng L, Hong F S, Yang P. Biol. Trace Elem. Res., 2007, 119: 77-88
[50] Lei Z, Su M Y, Xiao W, Chao L, Qu C X, Liang C, Hao H, Liu X Q, Hong F S. Biol. Trace Elem. Res., 2008, 121: 69-79
[51] Ghosh M, Bandyopadhyay M, Mukherjee A. Chemosphere, 2010, 81: 1253-1262
[52] Wang S, Kurepa J, Smalle J A. Plant Cell Environ., 2011, 34: 811-820
[53] Zhou J C, Wang X H, Xue M, Xu Z, Hamasaki T, Yang Y, Wang K, Dunn B. Mat. Sci. Eng. C Mater., 2010, 30: 20-26
[54] Franklin N M, Rogers N J, Apte S C, Batley G E, Gadd G E, Casey P S. Environ. Sci. Technol., 2007, 41: 8484-8490
[55] Li M H, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek E M V. Environ. Sci. Technol., 2011, 45: 755-761
[56] Li M, Zhu L Z, Lin D H. Environ. Sci. Technol., 2011, 45: 1977-1983
[57] Miller R J, Lenihan H S, Muller E B, Tseng N, Hanna S K, Keller A A. Environ. Sci. Technol., 2010, 44: 7329-7334
[58] Lee C W, Mahendra S, Zodrow K, Li D, Tsai Y C, Braam J, Alvarez P J J. Environ. Toxicol. Chem., 2010, 29: 669-675
[59] Yang L, Watts D J. Toxicol. Lett., 2005, 158: 122-132
[60] Murashov V. Toxicol. Lett., 2006, 164: 185-187
[61] Zhang P, Ma Y H, Zhang Z Y, He X, Guo Z, Tai R Z, Ding Y Y, Zhao Y L, Chai Z F. Environ. Sci. Technol., 2012, 46: 1834-1841
[62] Yin L Y, Cheng Y W, Espinasse B, Colman B P, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt E S. Environ. Sci. Technol., 2011, 45: 2360-2367
[63] Parsons J G, Lopez M L, Gonzalez C M, Peralta-Videa J R, Gardea-Torresdey J L. Environ. Toxicol. Chem., 2010, 29: 1146-1154
[64] Asli S, Neumann P M. Plant Cell Environ., 2009, 32: 577-584
[65] Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark W J, Günther D, Limbach L K. Environ. Sci. Technol., 2010, 44: 8718-8723
[66] 吕继涛(LV J T), 罗磊(Luo L), 张淑贞(Zhang S Z), 杨科(Yang K). 环境化学(Environmental Chemistry), 2011, 30: 903-907
[67] Wild E. Environ. Sci. Technol., 2007, 41: 5934-5938
[68] Lin D H, Xing B S. Environ. Sci. Technol., 2008, 42: 5580-5585
[69] Lee W M, An Y J, Yoon H, Kweon H S. Environ. Toxicol. Chem., 2008, 27: 1915-1921
[70] Liu Q L, Chen B, Wang Q L, Shi X L, Xiao Z Y, Lin J X, Fang X H. Nano Lett., 2009, 9: 1007-1010
[71] Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic B M, Lu J J, Wanzer M B, Woloschak G E, Smalle J A. Nano Lett., 2010, 10: 2296-2302
[72] Zhang Z Y, He X, Zhang H F, Ma Y H, Zhang P, Ding Y Y, Zhao Y L. Metallomics, 2011, 3: 816-822
[73] Chen R, Ratnikova T A, Stone M B, Lin S, Lard M, Huang G, Hudson J S, Ke P C. Small, 2010, 6: 612-617
[74] Sabo-Attwood T, Unrine J M, Stone J W, Murphy C J, Ghoshroy S, Blom D, Bertsch P M, Newman L A. Nanotoxicology, 2012, 6: 353-360
[75] Zhu H, Han J, Xiao J Q, Jin Y. J. Environ. Monitor., 2008, 10: 713-717
[76] Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M. J. Biomed. Nanotechnol., 2009, 5: 278-284
[77] Corredor E, Testillano P S, Coronado M J, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C, Ibarra M R, de la Fuente J M, Rubiales D, Perez-De-Luque A, Risueno M C. BMC. Plant Biol., 2009, 9: art. no. 45
[78] Wang Z Y, Xie X Y, Zhao J, Liu X Y, Feng W Q, White J C, Xing B S. Environ. Sci. Technol., 2012, 46: 4434-4441
[79] Lynch I, Salvati A, Dawson K A. Nat. Nanotechnol., 2009, 4: 546-547
[80] Glenn J B, White S A, Klaine S J. Environ. Toxicol. Chem., 2012, 31: 194-201

[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[4] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[5] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[6] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[7] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[8] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[9] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[10] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[11] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[12] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[13] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[14] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[15] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.