中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120618 Previous Articles   Next Articles

• Review •

Chemical Modification of Silica: Method, Mechanism, and Application

Chen Kailing, Zhao Yunhui*, Yuan Xiaoyan*   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
PDF ( 3553 ) Cited
Export

EndNote

Ris

BibTeX

Silica is one of the most important inorganic materials, and has been drawing a growing number of attentions in the field of organic/inorganic composite materials. In this paper, research progress on methods and mechanisms of chemical modification as well as applications of modified silica particles are reviewed in detail. Mechanisms of coupling method, surface grafting methods (“grafting from” and “grafting onto” included) and one-step method are discussed along with the comments on key points and advantages of these methods. The methods of “grafting from” based on conventional free radical polymerization, atom transfer radical polymerization and reversible addition-fragmentation chain transfer polymerization are discussed, whereas “grafting on” based on ring-opening addition reaction, “click chemistry” and esterification reaction are described. Generally, endowing silica surface with functional groups for further reaction by silane coupling agents is essential, and silane coupling agents and their modification mechanisms are introduced firstly. In addition, one-step method is also discussed here. At the same time, significances of surface modification which are improvement on dispersibility, endowing silica with functionality and improvement on compatibility are summarized. The dispersibility of surface modified silica particles in organic solvents or organic matrix is improved. The modified silica particles are functioned by the groups or polymers which are grafted on their surfaces. The adhesive forces between organic phase and inorganic phase are enhanced since the modified silica particles are dispersed well in the organic matrix. And the modified silica particles are expected applications in fabricating new materials. Contents
1 Introduction
2 Methods and mechanisms of chemical modification
2.1 Coupling method
2.2 Surface grafting method
2.3 One-step method
3 Significance of surface modification
3.1 Improvement on dispersibility
3.2 Endowing silica with functionality
3.3 Improvement on compatibility
3.4 Other significances
4 Conclusions and outlook

CLC Number: 

[1] Chen Y Z, Zhang Z P, Yu J, Guo Z X. J. Polym. Sci. Part B: Polym. Phys., 2009, 47(12): 1211-1218
[2] Qu A L, Wen X F, Pi P H, Cheng J, Yang Z R. J. Colloid Interf. Sci., 2008, 317(1): 62-69
[3] Darbandi M, Thomann R, Nann T. Chem. Mater., 2007, 19(7): 1700-1703
[4] Deng Z W, Chen M, Zhou S X, You B, Wu L M. Langmuir, 2006, 22(14): 6403-6407
[5] Brom C R, Anac I, Roskamp R F, Retsch M, Jonas U, Menges B, Preece J A. J. Mater. Chem., 2010, 20(23): 4827-4839
[6] Wang X, Zhao X H, Wang M Z, Shen Z G. Nucl. Instrum. Methods Phys. Res. Sect. B, 2006, 243(2): 320-324
[7] 张玉龙(Zhang Y L), 高树理(Gao S L). 纳米改性剂(Nanometer Modifier for Material). 北京: 国防工业出版社(Beijing: National Defence Industrial Press), 2004. 129-135
[8] Wang Q H, Luo Y Y, Feng C F, Yi Z F, Qiu Q F, Kong L X, Peng Z. J. Nanomater., 2012, ant. no. 782986
[9] Li G L, Xu L Q, Tang X Z, Neoh K J, Kang E T. Macromolecules, 2010, 43(13): 5797-5803
[10] Sun G Y, Chang Y P, Li S H, Li Q Y, Xu R, Gu J M, Wang E B. Dalton Trans., 2009, (23): 4481-4487. DOI: 10.1039/B901133A
[11] 崔新爱(Cui X A). 陕西师范大学硕士学位论文(Master Dissertation of Shaanxi Normal University), 2008. 6-7
[12] 束华东(Shu D H), 李小红(Li X H), 张志军(Zhang Z J). 化学进展(Progress in Chemistry), 2008, 20(10): 1509-1514
[13] 李德亮(Li D L), 王军(Wang J), 常志显(Chang Z X), 张志军(Zhang Z J). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1115-1121
[14] 王刚(Wang G), 颜峰(Yan F), 滕兆刚(Teng Z G), 杨文胜(Yang W S), 李铁津(Li T J). 化学进展(Progress in Chemistry), 2006, 18(2/3): 239-245
[15] Chen M, Wu L M, Zhou S X, You B. Macromolecules, 2004, 37(25): 9616-9619
[16] Chen M, Zhou S X, You B, Wu L M. Macromolecules, 2005, 38(15): 6411-6417
[17] Jin Y, Yang D Y, Kang D Y, Jiang X Y. Langmuir, 2010, 26(2): 1186-1190
[18] Wang Y Z, Fan D Q, He J P, Yang Y L. Colloid Polym. Sci., 2011, 289(17/18): 1885-1894
[19] Li D, Sheng X, Zhao B. J. Am. Chem. Soc., 2005, 127(17): 6248-6256
[20] Choi J H, Hui C M, Pietrasik J, Dong H C, Matyjaszewski K, Bockstaller M R. Soft Matter, 2012, 8(15): 4072-4082
[21] Achilleos D S, Vamvakaki M. Materials, 2010, 3(3): 1981-2026
[22] Durand N, Boutevin B, Silly G, Ameduri B. Macromolecules, 2011, 44(21): 8487-8493
[23] Matyjaszewski K. Prog. Polym. Sci., 2005, 30(8/9): 858-875
[24] Von Werne T, Pattern T E. J. Am. Chem. Soc., 1999, 121(32): 7409-7410
[25] Werne T V, Pattern T E. J. Am. Chem. Soc., 2001, 123(31): 7497-7505
[26] Park J T, Seo J A, Ahn S H, Kim J H, Kang S W. J. Ind. Eng. Chem., 2010, 16 (4): 517-522
[27] 雷海琴(Lei H Q), 曹惠庆(Cao H Q), 朱新宝(Zhu X B). 江苏化工(Jiangsu Chemical Industry), 2008, 36(1): 9-12
[28] 杨友强(Yang Y Q), 孙清清(Sun Q Q), 张灿阳(Zhang C Y), 郭新东(Guo X D), 章莉娟(Zhang L J), 文秀芳(Wen X F). 化学学报(Acta Chimica Sinica), 2012, 70(4): 505-511
[29] Du S X, Zhou G W, Wang X L, Li T D, Xu Y Q, Zhang L. Micro. Nano. Lett., 2011, 6(3): 154-156
[30] Hojjati B, Charpentier P A. Polymer, 2010, 51(23): 5345-5351
[31] Rotzoll R, Vana P. J. Polym. Sci. Part A: Polym. Chem., 2008, 46 (23): 7656-7666
[32] Stenzel M H. Macromol. Rapid Commun., 2009, 30(19): 1603-1624
[33] Ohno K, Ma Y, Huang Y, Mori C, Yahata Y, Tsujii Y, Maschrnmeyer T, Moraes J, Perrier S. Macromolecules, 2011, 44(22): 8944-8953
[34] Liu J L, Zhang L F, Shi S P, Chen S, Zhou N C, Zhang Z B, Cheng Z P, Zhu X L. Langmuir, 2010, 26(18): 14806-14813
[35] Zhou D, Zhu X L, Zhu J, Hu L H, Cheng Z P. J. Appl. Polym. Sci., 2007, 103(2): 982-988
[36] Zhang W T, Lee H R. Surf. Interface Anal., 2010, 42(9): 1495-1498
[37] 邱素艳(Qu S Y), 高森(Gao S), 林振宇(Lin Z Y), 陈国南(Chen G N). 化学进展(Progress in Chemistry), 2011, 23(4): 637-648
[38] Fried D I, Schlossbauer A, Bein T. Micropor. Mesopor. Mat., 2012, 147(1): 5-9
[39] Kar M, Vijayakumar P S, Prasad B L V, Gupta S S. Langmuir, 2010, 26(8): 5772-5781
[40] Feng L B, Wang Y L, Wang N, Ma Y X. Polym. Bull., 2009, 63(3): 313-327
[41] Feng L B, Li H, Yang M J, Wang X W. Colloid Polym. Sci., 2010, 288(6): 673-680
[42] Hwang Y J, Lee Y H, Oh C, Jun Y D, Oh S G. J. Ind. Eng. Chem., 2006, 12(3): 380-386
[43] 钱晓静(Qian X J), 刘孝恒(Liu X H), 陆路德(Lu L D), 陈文杰(Chen W J), 汪信(Wang X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20(3): 335-344
[44] 赵心怡(Zhao X Y), 叶明泉(Ye M Q), 韩爱军(Han A J). 塑料工业(China Plastics Industry), 2006, 34(B05): 16-19
[45] Ossenkamp G C, Kemmitt T, Johnston J H. Langmuir, 2002, 18(15): 5749-5754
[46] Shi B F, Wang Y Q, Ren J W, Liu X H, Zhang Y, Guo Y L, Guo Y, Lu G Z. J. Mol. Catal. B: Enzym., 2010, 63(1/2): 50-56
[47] Fuertes A B, Vigon P V, Marta S. Chem. Comm., 2012, 48(49): 6124-6126
[48] Liu R, Mahurin S M, Li C, Unocic R R, Idrobo J C, Gao H J, Pennycook S J, Dai S. Angew. Chem. Int. Ed., 2011, 50(30): 6799-6802
[49] Beltran A B, Nisola G M, Cho E, Lee E E D, Chung W J. Appl. Surf. Sci., 2011, 258(61): 337-345
[50] Li X H, Cao Z, Zhang Z H, Dang H X. Appl. Surf. Sci., 2006, 252(22): 7856-7861
[51] Zou B, Hu Y, Yu D H, Jiang L, Liu W M, Song P. Colloid. Surface B, 2011, 88(1): 93-99
[52] Goto Y, Otsuka N, Sawada H. Polym. Advan. Technol., 2012, 23(3): 290-298
[53] Shan J, Nuopponen M, Jiang H, Viitala T, Kauppinen E, Kontturi K, Tenhu H. Macromolecules, 2005, 38(7): 2918-2926
[54] Galeotti F, Bertini F, Scavia G, Bolognesi A. J. Colloid Interf. Sci., 2011, 360 (2): 540-547
[55] Brassard J D, Sarkar D K, Perron J. ACS Appl. Mater. Inter., 2011, 3(9): 3583-3588
[56] Zhao Y, Li M, Lu Q H, Shi Z Y. Langmuir, 2008, 24(21): 12651-12657
[57] 钱晓静(Qian X J), 刘孝恒(Liu X H), 陆路德(Lu L D), 陈文杰(Chen W J), 汪信(Wang X). 合成化学(Chinese Journal of Synthetic Chemistry), 2005, 13(1): 80-82
[58] Kim H, Kim H G, Kim S, Kim S S. J. Membrane Sci., 2009, 344(1/2): 211-218
[59] Su H L, Hsu J M, Pan J P, Chern C S. J. Appl. Polym. Sci., 2007, 103(6): 3600-3608

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[3] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[4] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[5] Yingying Wei, Lin Chen, Junli Wang, Shiping Yu, Xuguang Liu, Yongzhen Yang. Synthesis and Applications of Chiral Carbon Quantum Dots [J]. Progress in Chemistry, 2020, 32(4): 381-391.
[6] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[7] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.
[8] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[9] Zhu Zhang, Qiyong Jiang, Jiazhu Li, Jinjun Wang. Rearrangement Reactions of Chlorophyllous Tetrapyrrole Macrocyclic Molecules [J]. Progress in Chemistry, 2017, 29(2/3): 262-284.
[10] Du Xin, Zhao Caixia, Huang Hongwei, Wen Yongqiang, Zhang Xueji. Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier [J]. Progress in Chemistry, 2016, 28(8): 1131-1147.
[11] Zheng Na, Jie Suyun, Li Bogeng. Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene [J]. Progress in Chemistry, 2016, 28(5): 665-672.
[12] Wang Shengjie, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai. Biomimetic Mineralization of Silica [J]. Progress in Chemistry, 2015, 27(2/3): 229-241.
[13] Zhang Xiaodong, Dong Han, Wang Yin, Cui Lifeng. Host-Guest Assembly and Application of Ordered Mesoporous Silica Materials [J]. Progress in Chemistry, 2015, 27(10): 1374-1383.
[14] Zeng Feng, Pan Zhenzhen, Zhang Meng, Huang Yongzhuo, Cui Yanna, Xu Qin. Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor [J]. Progress in Chemistry, 2015, 27(10): 1356-1373.
[15] Bian Shujuan, Wu Hongqing, Jiang Xuheng, Long Yafeng, Chen Yong. Syntheses and Applications of Hybrid Mesoporous Silica Membranes [J]. Progress in Chemistry, 2014, 26(08): 1352-1360.