中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1492-1508 DOI: 10.753/PC220326 Previous Articles   Next Articles

• Review •

Condensed Matter and Chemical Reactions in Hydrothermal Systems

Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen()   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: Jiesheng Chen
  • Supported by:
    National Natural Science Foundation of China(21931005)
Richhtml ( 29 ) PDF ( 277 ) Cited
Export

EndNote

Ris

BibTeX

Water is a clean, safe, environmentally benign chemical reaction medium. Understanding the properties of water and the chemical processes in hydrothermal systems is of vital significance in the research of condensed matter chemistry. The physicochemical features of water under hydrothermal conditions greatly differ from that under normal conditions, and thus the hydrothermal technique has been extended to much broader systems. In this review article, we introduce the structures of water and its clusters, the variation of their properties along with conditions, and relevant condensed matters in hydrothermal systems. We also illustrate hydrothermal chemistry by discussing the preparation of typical materials through hydrothermal methods, hydrothermal organic reactions, and bio-hydrothermal chemistry. By relating condensed matter and hydrothermal chemistry, we hope this review will offer new ideas for comprehending hydrothermal reaction systems from the angle of condensed matter chemistry.

Contents

1 Introduction

2 Structure characters of water molecule and clusters

2.1 Structure of water molecule

2.2 Structures of water clusters

2.3 Water cages with guest molecules

3 State of water in hydrothermal and supercritical systems

3.1 Phase diagram of water

3.2 Characters of water under supercritical conditions

4 Condensed matters in hydrothermal systems

4.1 Solvation effect

4.2 Crystallization of zeolites

4.3 Hydrothermal molten salt systems

5 Synthesis of inorganic materials by hydrothermal methods

5.1 Hydrothermal synthetic mechanism of inorganic crystals

5.2 Bulk single crystals

5.3 Inorganic micro-nano materials

6 Synthesis of porous materials by hydrothermal methods

6.1 Microporous materials

6.2 Mesoporous materials

6.3 Metal organic frameworks (MOFs)

7 Synthesis of organic molecules in hydrothermal systems

7.1 Biomass transformations

7.2 Organic reactions in hydrothermal systems

7.3 C1 transformations

7.4 Organic ligands transformations

8 Synthesis of biomolecules in hydrothermal systems

9 Conclusion and outlook

Fig. 1 The structure of water molecule
Fig. 2 The configurations of H2O clusters ((H2O)N) with the lowest energy calculated by TIP4P potential[4]. Copyright 1998, Elsevier
Fig. 3 Three structures of common hydrate cages and the guest molecules
Fig. 4 The phase diagram of water when temperature and pressure vary[13]. Copyright 2010, Society of Chemical Industry
Fig. 5 Plot of ion product variation of water with density, temperature portrayed by Franck et al.[29] according to the data from Marshall et al.[34]. Copyright 1981, American Institute of Physics for the National Institute of Standards and Technology
Fig. 6 Schematic illustration of solvation effect between NaCl and H2O
Fig. 7 The schematic illustration of hydrothermal molten salt systems[36]. Copyright 2020, American Association for the Advancement of Science
Fig. 8 Apparatus for crystal synthesis by temperature gradient-thermoseed hydrothermal method
Fig. 9 Bulk single crystals synthesized by hydrothermal method. (a) Quartz crystal[44]; (b) 2-inch zinc oxide single crystal[52]; Copyright 2005, IOP (c) YAG crystals, Nd:YAG (left) and Cr:YAG (right)[57]; Copyright 2012 Taylor & Francis (d) Single crystal of emerald[61];Copyright 2017 American Chemical Society. (e) KTiOPO4 (KTP) crystal[66]; Copyright 2008, Elsevier (f) Optical crystals of KBe2BO3F2 (KBBF) and RbBe2BO3F2 (RBBF)[57]. Copyright 2012, Taylor & Francis
Fig. 10 Structure of aluminophosphate molecular sieve JDF-20[82]. Copyright 1992, Royal Society Chemistry
Fig. 11 Schematic illustration of formation processes of the uniform ordered mesoporous carbon nanospheres prepared by Fang et al.[89]. Copyright 2010, Wiley
Fig. 12 Schematic illustration of synthetic steps of MIL-100(Fe) and its DTX loading experiments by Rezaei et al.[108]. Copyright 2017, Taylor & Francis Group
Fig. 13 Mechanism of D-xylose reaction in sub- and supercritical water[114]. Copyright 2010, Elsevier
Fig. 14 Catalytic mechanism of methyl tert-butyl ether acid in sub- and supercritical water[119]
Fig. 15 F-T reaction pathway under hydrothermal condition[124]. Copyright 2015, Elsevier
Fig. 16 In situ decarboxylation of H2pydc ligand to 2-pyridinecarboxylic acid ligand[131]. Copyright 2017, Elsevier
Fig. 17 Schematic illustration of a flow reactor equipment by simulating the submarine hydrothermal system[141]
[1]
Li X H, Deng S D, Fu H. Prog. Org. Coat., 2010, 67(4): 420.
[2]
Kim K, Jordan K D, Zwier T S. J. Am. Chem. Soc., 1994, 116(25): 11568.

doi: 10.1021/ja00104a047
[3]
Wales D J, Doye J P K, Dullweber A, Hodges M P, Naumkin F Y. The Cambridge Cluster Database, [2022-03-01] https://www-wales.ch.cam.ac.uk/-wales/CCD/anant-watcl.html.
[4]
Wales D J, Hodges M P. Chem. Phys. Lett., 1998, 286(1/2): 65.

doi: 10.1016/S0009-2614(98)00065-7
[5]
English N J, MacElroy J M D. Chem. Eng. Sci., 2015, 121: 133.

doi: 10.1016/j.ces.2014.07.047
[6]
Sloan E D Jr. Nature, 2003, 426(6964): 353.

doi: 10.1038/nature02135
[7]
Sloan E D. J. Chem. Thermodyn., 2003, 35(1): 41.

doi: 10.1016/S0021-9614(02)00302-6
[8]
Anderson B J. Fluid Phase Equilibria, 2007, 254(1/2): 144.

doi: 10.1016/j.fluid.2007.02.029
[9]
Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H. Nature, 2019, 569(7755): 251.

doi: 10.1038/s41586-019-1114-6
[10]
Wilson H F, Wong M L, Militzer B. Phys. Rev. Lett., 2013, 110(15): 151102.

doi: 10.1103/PhysRevLett.110.151102
[11]
Gasser T M, Thoeny A V, Fortes A D, Loerting T. Nat. Commun., 2021, 12: 1128.

doi: 10.1038/s41467-021-21161-z
[12]
Shigeru D, Kaoru T. Soft Matter, 2007, 3: 797.

doi: 10.1039/b611584e pmid: 32900070
[13]
Loppinet-Serani A, Aymonier C, Cansell F. J. Chem. Technol. Biotechnol., 2010, 85(5): 583.
[14]
Oliver R, Gittus, Fernando B. J. Chem. Phys., 2021, 155: 114501.

doi: 10.1063/5.0057868
[15]
Ramos L, Kristenson E M, Brinkman U A T. J. Chromatogr. A, 2002, 975: 3.

pmid: 12458746
[16]
Thiruvenkadam S, Izhar S, Yoshida H, Danquah M K, Harun R. Appl. Energy, 2015, 154: 815.

doi: 10.1016/j.apenergy.2015.05.076
[17]
Herrero M, Cifuentes A, Ibañez E. Food Chem., 2006, 98(1): 136.

doi: 10.1016/j.foodchem.2005.05.058
[18]
Cai Q, Huang Z H, Kang F Y, Yang J B. Carbon, 2004, 42(4): 775.

doi: 10.1016/j.carbon.2004.01.042
[19]
Meng N, Jiang D D, Liu Y, Gao Z Y, Cao Y Q, Zhang J L, Gu J J, Han Y. Fuel, 2016, 186: 394.

doi: 10.1016/j.fuel.2016.08.097
[20]
Calvo L, Vallejo D. Ind. Eng. Chem. Res., 2002, 41(25): 6503.

doi: 10.1021/ie020441m
[21]
Postorino P, Tromp R H, Ricci M A, Soper A K, Neilson G W. Nature, 1993, 366(6456): 668.

doi: 10.1038/366668a0
[22]
Gorbaty Y E, Kalinichev A G. J. Phys. Chem., 1995, 99(15): 5336.
[23]
Bernabei M, Botti A, Bruni F, Ricci M A, Soper A K. Phys. Rev. E, 2008, 78(2): 021505.

doi: 10.1103/PhysRevE.78.021505
[24]
Tassaing T, Bellissent-Funel M C. J. Chem. Phys., 2000, 113(8): 3332.

doi: 10.1063/1.1286599
[25]
Sahle C J, Sternemann C, Schmidt C, Lehtola S, Jahn S, Simonelli L, Huotari S, Hakala M, Pylkkänen T, Nyrow A, Mende K, Tolan M, Hämäläinen K, Wilke M. PNAS, 2013, 110(16): 6301.

doi: 10.1073/pnas.1220301110
[26]
Hoffmann M M, Conradi M S. J. Am. Chem. Soc., 1997, 119(16): 3811.

doi: 10.1021/ja964331g
[27]
Matubayasi N, Nakao N, Nakahara M. J. Chem. Phys., 2001, 114(9): 4107.
[28]
Franck E U, Roth K. Discuss. Faraday Soc., 1967, 43: 108.

doi: 10.1039/df9674300108
[29]
Weingärtner H, Franck E U. Angew. Chem. Int. Ed., 2005, 44(18): 2672.

doi: 10.1002/anie.200462468
[30]
Schienbein P, Marx D. Angew. Chem. Int. Ed., 2020, 59(42): 18578.

doi: 10.1002/anie.202009640
[31]
Uematsu M, Frank E U. J. Phys. Chem. Ref. Data, 1980, 9(4): 1291.

doi: 10.1063/1.555632
[32]
Shi J, Mittal G, Kim E, Xue S J. Food Rev. Int., 2007, 23(4): 341.

doi: 10.1080/87559120701593806
[33]
Butenhoff T J, Goemans M G E, Buelow S J. J. Phys. Chem., 1996, 100(14): 5982.

doi: 10.1021/jp952975p
[34]
Marshall W L, Franck E U. J. Phys. Chem. Ref. Data, 1981, 10(2): 295.

doi: 10.1063/1.555643
[35]
Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelínek P, Xu L M, Gao Y Q, Wang E G, Jiang Y. Nature, 2018, 557(7707): 701.

doi: 10.1038/s41586-018-0122-2
[36]
Voisin T, Erriguible A, Aymonier C. Sci. Adv., 2020, 6(17): eaaz7770.

doi: 10.1126/sciadv.aaz7770
[37]
Feng S H, Li G H. Modern Inorganic Synthetic Chemistry. Amsterdam: Elsevier, 2017. 78.
[38]
Rabenau A. Angew. Chem. Int. Ed. Engl., 1985, 24(12): 1026.

doi: 10.1002/anie.198510261
[39]
Pritula I, Sangwal K.. Handbook of Crystal Growth. Amsterdam: Elsevier, 2015. 1221.
[40]
Demazeau G, Largeteau A, Darracq S. Zeitschrift Für Naturforschung B, 2010, 65(8): 1007.

doi: 10.1515/znb-2010-0806
[41]
Hosaka M, Taki S. J. Cryst. Growth, 1981, 51(3): 640.

doi: 10.1016/0022-0248(81)90451-6
[42]
Rabenau A. Phys. Chem. Earth, 1981, 13/14: 361.

doi: 10.1016/0079-1946(81)90018-5
[43]
Armington A F. Prog. Cryst. Growth Charact. Mater., 1991, 21(1-4): 97.
[44]
Carter C B, Norton M G. Ceramic Materials: Science and Engineering. 2nd ed. NY: Springer Science & Business Media, 2013. 533.
[45]
Zarka A, Lin L, Buisson M. J. Cryst. Growth, 1981, 54(3): 394.

doi: 10.1016/0022-0248(81)90489-9
[46]
Byrappa K, Adschiri T. Prog. Cryst. Growth Charact. Mater., 2007, 53(2): 117.

doi: 10.1016/j.pcrysgrow.2007.04.001
[47]
Somiya S. J. Mater. Sci., 2006, 41(5): 1307.

doi: 10.1007/s10853-006-7300-6
[48]
Balitsky V S. J. Cryst. Growth, 1977, 41(1): 100.

doi: 10.1016/0022-0248(77)90102-6
[49]
Feigelson R. 50 years progress in crystal growth: a reprint collection, 2004. 185.
[50]
Huang F, Lin Z, Lin W W, Zhang J Y, Ding K, Wang Y H, Zheng Q H, Zhan Z B, Yan F B, Chen D G, Lv P W, Wang X. Chin. Sci. Bull., 2014, 59(12): 1235.

doi: 10.1007/s11434-014-0154-4
[51]
Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T. J. Cryst. Growth, 2004, 260(1/2): 166.

doi: 10.1016/j.jcrysgro.2003.08.019
[52]
Maeda K, Sato M, Niikura I, Fukuda T. Semicond. Sci. Technol., 2005, 20(4): S49.

doi: 10.1088/0268-1242/20/4/006
[53]
Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T. Prog. Cryst. Growth Charact. Mater., 2006, 52(4): 280.

doi: 10.1016/j.pcrysgrow.2006.09.002
[54]
Laudise R A, Kolb E D. J. Am. Ceram. Soc., 1962, 45(2): 51.

doi: 10.1111/j.1151-2916.1962.tb11078.x
[55]
Laudise R A, Crocket J H, Ballman A A. J. Phys. Chem., 1961, 65(2): 359.

doi: 10.1021/j100820a043
[56]
McMillen C D, Mann M, Fan J H, Zhu L, Kolis J W. J. Cryst. Growth, 2012, 356: 58.

doi: 10.1016/j.jcrysgro.2012.07.003
[57]
McMillen C D, Kolis J W. Philos. Mag., 2012, 92(19/21): 2686.

doi: 10.1080/14786435.2012.685772
[58]
Nassau K. J. Cryst. Growth, 1976, 35(2): 211.

doi: 10.1016/0022-0248(76)90172-X
[59]
Kodaira K, Iwase Y, Tsunashima A, Matsushita T. J. Cryst. Growth, 1982, 60(1): 172.

doi: 10.1016/0022-0248(82)90193-2
[60]
Lee P L, Lee J S, Huang E, Liao J H. Phys. Chem. Miner., 2013, 40(5): 439.

doi: 10.1007/s00269-013-0581-9
[61]
Thomas V G, Daneu N, Re,? nik A, Fursenko D A, Demin S P, Belinsky S P, Gavryushkin P N. Cryst. Growth Des., 2017, 17(2): 763.

doi: 10.1021/acs.cgd.6b01616
[62]
Byrappa K, Keerthiraj N, Byrappa S M. Handbook of Crystal Growth. Amsterdam: Elsevier, 2015. 563.
[63]
Demazeau G, Largeteau A. Z. Anorg. Allg. Chem., 2015, 641(2): 159.

doi: 10.1002/zaac.201400515
[64]
Fornari R, Roth M. MRS Bull., 2009, 34(4): 239.
[65]
Dhanaraj G, Byrappa K, Prasad V, Dudley M. Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 603.
[66]
Zhang C L, Hu Z G, Huang L X, Zhou W N lü Z, Zhang G, Liu Y C, Zou Y B, Lu F H, Hou H D, Qin S J, Zhang H X, Bai L. J. Cryst. Growth, 2008, 310(7/9): 2010.

doi: 10.1016/j.jcrysgro.2007.12.007
[67]
Yao W T, Yu S H. Int. J. Nanotechnol., 2007, 4(1/2): 129.

doi: 10.1504/IJNT.2007.012320
[68]
Li Y D, Wang J W, Deng Z X, Wu Y Y, Sun X M, Yu D P, Yang P D. J. Am. Chem. Soc., 2001, 123(40): 9904.

pmid: 11583558
[69]
Li Y D, Wang X. J. Am. Chem. Soc., 2002, 124: 2880.

pmid: 11902872
[70]
Kuo C L, Kuo T J, Huang M H. J. Phys. Chem. B, 2005, 109(43): 20115.

doi: 10.1021/jp0528919
[71]
Lou X W, Zeng H C. Inorg. Chem., 2003, 42(20): 6169.

doi: 10.1021/ic034771q
[72]
Sun S H, Yang D Q, Villers D, Zhang G X, Sacher E, Dodelet J P. Adv. Mater., 2008, 20(3): 571.

doi: 10.1002/adma.200701408
[73]
Piticescu R M, Moisin A M, Taloi D, Badilita V, Soare I. J. Eur. Ceram. Soc., 2004, 24(6): 931.

doi: 10.1016/S0955-2219(03)00545-4
[74]
Xun X, Feng S, Xu R. Mater. Res. Bull., 1998, 33(3): 369.

doi: 10.1016/S0025-5408(97)00240-7
[75]
Meng L Y, Wang B, Ma M G, Lin K L. Mater. Today Chem., 2016, 1/2: 63.
[76]
Xu D, Pang W, Yu J H, Huo Q, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. John Wiley & Sons, 2009, 8: 124.
[77]
Breck D W, Eversole W G, Milton R M, Reed T B, Thomas T L. J. Am. Chem. Soc., 1956, 78(23): 5963.

doi: 10.1021/ja01604a001
[78]
Barrer R M, Denny P J. J. Chem. Soc., 1961: 971.
[79]
Thompson R W, Huber M J. J. Cryst. Growth, 1982, 56(3): 711.

doi: 10.1016/0022-0248(82)90056-2
[80]
Kühl G H. Zeolites, 1987, 7(5): 451.

doi: 10.1016/0144-2449(87)90014-5
[81]
Kim G J, Ahn W S. Zeolites, 1991, 11(7): 745.

doi: 10.1016/S0144-2449(05)80183-6
[82]
Huo Q S, Xu R R, Li S G, Ma Z G, Thomas J M, Jones R H, Chippindale A M. J. Chem. Soc., Chem. Commun., 1992, 20(12): 875.
[83]
Huo Q S, Xu R R, Li S G, Xu Y H, Ma Z G, Yue Y, Li L Y.. Proceedings from the Ninth International Zeolite Conference. Amsterdam: Elsevier, 1993. 279.
[84]
Wang J Q, Huang Y X, Pan Y, Mi J X. Micropor. Mesopor. Mater., 2014, 199: 50.

doi: 10.1016/j.micromeso.2014.08.002
[85]
Sevilla M, Gu W, Falco C, Titirici M M, Fuertes A B, Yushin G. J. Power Sources, 2014, 267: 26.

doi: 10.1016/j.jpowsour.2014.05.046
[86]
Tan C, Liu Z D, Yonezawa Y, Sukenaga S, Ando M, Shibata H, Sasaki Y, Okubo T, Wakihara T. Chem. Commun., 2020, 56(18): 2811.

doi: 10.1039/C9CC09966B
[87]
Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webley P A, Zhao D Y. Chem. Commun., 2008, (23): 2641.
[88]
Feng S S, Li W, Wang J X, Song Y F, Elzatahry A A, Xia Y Y, Zhao D Y. Nanoscale, 2014, 6(24): 14657.

doi: 10.1039/C4NR05629A
[89]
Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angewandte Chemie Int. Ed., 2010, 49(43): 7987.

doi: 10.1002/anie.201002849
[90]
Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J. Am. Chem. Soc., 2000, 122(43): 10712.

doi: 10.1021/ja002261e
[91]
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. Nat. Commun., 2013, 4: 2798.

doi: 10.1038/ncomms3798
[92]
Xu D, Pang W, Yu J H, Huo Q, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, John Wiley & Sons, 2009, 8: 8.
[93]
Huang W H, Li X M, Yang X F, Zhang H B, Wang F, Zhang J. Chem. Commun., 2021, 57(39): 4847.

doi: 10.1039/D1CC01578H
[94]
Huang W H, Li X M, Yu D Y, Yang X F, Wang L F, Liu P B, Zhang J. Nanoscale, 2020, 12(38): 19804.

doi: 10.1039/D0NR04418K
[95]
Huang W H, Li X M, Yang X F, Zhang H Y, Liu P B, Ma Y M, Lu X. Chem. Eng. J., 2021, 420: 127595.

doi: 10.1016/j.cej.2020.127595
[96]
Li P J, Shen Y L, Li X M, Huang W H, Lu X. Energy Environ. Mater., 2022, 5(2):608.
[97]
Huang W H, Li Q H, Yu D Y, Tang Y H, Lin D Y, Wang F, Zhang J. Inorg. Chem., 2021, 60(5): 3074.

doi: 10.1021/acs.inorgchem.0c03359
[98]
Huang W H, Ren J, Yang Y H, Li X M, Wang Q, Jiang N, Yu J Q, Wang F, Zhang J. Inorg. Chem., 2019, 58(2): 1481.

doi: 10.1021/acs.inorgchem.8b02994
[99]
Huang W H, Zhang X X, Zhao Y N. Dalton Trans., 2021, 50(1): 15.

doi: 10.1039/D0DT03524F
[100]
Huang W H, Zhang X X, Zhao Y N, Zhang J, Liu P B. Carbon, 2020, 167: 19.

doi: 10.1016/j.carbon.2020.05.073
[101]
Liu P B, Gao S, Huang W H, Ren J, Yu D Y, He W J. Carbon, 2020, 159: 83.

doi: 10.1016/j.carbon.2019.12.021
[102]
Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248
[103]
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469.

pmid: 11799235
[104]
Liu B, Guo K, Feng H J, Miao W N, He T T, Xu L. J. Solid State Chem., 2017, 254: 47.

doi: 10.1016/j.jssc.2017.07.001
[105]
Zhang L R, Shi Z, Yang G Y, Chen X M, Feng S H. J. Solid State Chem., 1999, 148(2): 450.

doi: 10.1006/jssc.1999.8478
[106]
Zhang L R, Shi Z, Yang G Y, Chen X M, Feng S H. J. Chem. Soc., Dalton Trans., 2000(3): 275.
[107]
Pham M H, Vuong G T, Vu A T, Do T O. Langmuir, 2011, 27(24): 15261.

doi: 10.1021/la203570h
[108]
Rezaei M, Abbasi A, Varshochian R, Dinarvand R, Jeddi-Tehrani M. Artif. Cells Nanomed. Biotechnol., 2018, 46(7): 1390.

doi: 10.1080/21691401.2017.1369425 pmid: 28838252
[109]
Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9): 4044.

doi: 10.1021/cr068360d
[110]
Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Ind. Eng. Chem. Res., 2000, 39(8): 2883.

doi: 10.1021/ie990690j
[111]
Oefner P J, Lanziner A H, Bonn G, Bobleter O. Monatshefte Für Chemie/Chem. Mon., 1992, 123(6/7): 547.
[112]
Antal M J Jr, Leesomboon T, Mok W S, Richards G N. Carbohydr. Res., 1991, 217: 71.

doi: 10.1016/0008-6215(91)84118-X
[113]
Luijkx G C A. Doctoral Dissertation of Technische Universiteit Delft, 1994.
[114]
Aida T M, Shiraishi N, Kubo M, Watanabe M, Smith R L Jr. J. Supercrit. Fluids, 2010, 55(1): 208.

doi: 10.1016/j.supflu.2010.08.013
[115]
Barbier J, Charon N, Dupassieux N, Loppinet-Serani A, MahÉ L, Ponthus J, Courtiade M, Ducrozet A, Quoineaud A A, Cansell F. Biomass Bioenergy, 2012, 46: 479.

doi: 10.1016/j.biombioe.2012.07.011
[116]
Sato N, Quitain A T, Kang K, Daimon H, Fujie K. Ind. Eng. Chem. Res., 2004, 43(13): 3217.

doi: 10.1021/ie020733n
[117]
Klingler D, Berg J, Vogel H. J. Supercrit. Fluids, 2007, 43(1): 112.

doi: 10.1016/j.supflu.2007.04.008
[118]
Hu J B, Du Z X, Min E Z. Sino Glob. Energy, 2011, 16(11): 31. (in Chinese)
(胡见波, 杜泽学, 闵恩泽. 中外能源, 2011, 16(11): 31.).
[119]
Taylor J D, Steinfeld J I, Tester J W. Ind. Eng. Chem. Res., 2001, 40(1): 67.

doi: 10.1021/ie0006357
[120]
Xu X D, Antal M J, Anderson D G M. Ind. Eng. Chem. Res., 1997, 36(1): 23.

doi: 10.1021/ie960349o
[121]
Zhang G W, Hu H H, Li S S, Lu W X, Wang P. Chinese Journal of Synthetic Chemistry, 2021, 29: 100.
(张广威, 胡海慧, 李双双, 卢文欣, 王鹏. 合成化学, 2021, 29: 100.).
[122]
Duan J F, Mu X J, Zhou Z, Bi J F, Xiao S Y. Chemistry Bulletin, 2018, 81: 1023.
(段建凤, 穆小静, 周瞾, 毕旌富, 肖尚友. 化学通报, 2018, 81: 1023.).
[123]
Mißbach H, Schmidt B C, Duda J P, Lünsdorf N K, Goetz W, Thiel V. Org. Geochem., 2018, 119: 110.

doi: 10.1016/j.orggeochem.2018.02.012
[124]
Fu Q, Socki R A, Niles P B. Geochimica Cosmochimica Acta, 2015, 154: 1.

doi: 10.1016/j.gca.2015.01.027
[125]
Kummer J T, Emmett P H. J. Am. Chem. Soc., 1953, 75(21): 5177.

doi: 10.1021/ja01117a008
[126]
Chen Q W, Bahnemann D W. J. Am. Chem. Soc., 2000, 122(5): 970.

doi: 10.1021/ja991278y
[127]
Tian G, Yuan H M, Mu Y, He C, Feng S H. Org. Lett., 2007, 9(10): 2019.

pmid: 17444651
[128]
He D, Wang X, Yang Y, He R, Zhong H, Wang Y, Han B, Jin F. PNAS, 2021, 118.
[129]
Juibari N M, Abbasi A, Hasani N. Inorg. Chim. Acta, 2015, 432: 267.

doi: 10.1016/j.ica.2015.04.014
[130]
Ay B, Yildiz E, Kani î J. Solid State Chem, 2016, 233: 44.

doi: 10.1016/j.jssc.2015.09.036
[131]
Ay B, Yildiz E, Kani î Polyhedron, 2017, 130: 165.

doi: 10.1016/j.poly.2017.04.011
[132]
Ay B, Šahin O, Yildiz E, Solid State Sci., 2019, 96: 105958.

doi: 10.1016/j.solidstatesciences.2019.105958
[133]
Xu J, Su W P, Hong M C. CrystEngComm, 2011, 13(12): 3998.

doi: 10.1039/c0ce00800a
[134]
Ricardo A, Carrigan M A, Olcott A N, Benner S A. Science, 2004, 303(5655): 196.

pmid: 14716004
[135]
Saladino R, Crestini C, Costanzo G, Negri R, Mauro E D. Bioorganic Med. Chem. Lett., 2001, 9: 1249.
[136]
Powner M W, Gerland B, Sutherland J D. Nature, 2009, 459(7244): 239.

doi: 10.1038/nature08013
[137]
Fox S W, Windsor C R. Science, 1970, 170(3961): 984.

pmid: 5475023
[138]
Kitadai N, Nakamura R, Yamamoto M, Ken T K, Yoshida N, Oono Y. Sci. Adv., 2019, 5(6): eaav7848.

doi: 10.1126/sciadv.aav7848
[139]
Kitadai N, Nakamura R, Yamamoto M, Ken T K, Li Y M, Yamaguchi A, Gilbert A, Ueno Y, Yoshida N, Oono Y. Sci. Adv., 2018, 4(4): eaao7265.
[140]
Marshall-Bowman K, Ohara S, Sverjensky D A, Hazen R M, Cleaves H J. Geochimica Cosmochimica Acta, 2010, 74(20): 5852.

doi: 10.1016/j.gca.2010.07.009
[141]
Imai E I, Honda H, Hatori K, Brack A, Matsuno K. Science, 1999, 283(5403): 831.

pmid: 9933163
[1] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[2] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[3] Bao Li, Lixin Wu. Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid [J]. Progress in Chemistry, 2022, 34(7): 1600-1609.
[4] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[5] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[6] Qiang Li, Kun Lin, Xianran Xing. Local Structure Determination Based on Total Scattering and Condensed Matter [J]. Progress in Chemistry, 2020, 32(8): 1219-1230.
[7] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[8] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[9] Zhou Ying, Lin Yuanhua, Greta R. Patzke. Synchrotron Radiation for the Study of Hydrothermal Formation Mechanisms of Oxide Nanomaterials [J]. Progress in Chemistry, 2012, 24(08): 1583-1591.
[10] Yan Bo1,2 Wei Chaohai2**. Hydrogen Production from Organic Compounds by Supercritical Water Gasification [J]. Progress in Chemistry, 2008, 20(10): 1553-1561.
[11] Wei Chaohai**,Yan Bo,Hu Chengsheng. PCBs Treatment by Sub-Supercritical Water Catalytic Oxidation, Thermolysis and Reduction [J]. Progress in Chemistry, 2007, 19(9): 1275-1281.
[12]

Wang Ze,Lin Weigang,Song Weili**,Yao Jianzhong,Lu Changbo,Du Lin

. Bio-Fuel and Chemicals by Thermochemical Treating of Biomass [J]. Progress in Chemistry, 2007, 19(0708): 1190-1197.
[13] Chen Jinyang,Zheng Haifei,Zeng Yishan**. Recent Progress in Supercritical Water Theoretical Research [J]. Progress in Chemistry, 2002, 14(06): 409-.