Please wait a minute...
English
新闻公告
More
化学进展 2017, No.4 上一期 后一期 返回主页

本刊导览

目录
目录
2017, 29 (4): 0-0 |
出版日期: 2017-04-15
摘要
综述
衬底调制下的硼墨烯、硅烯、锗烯等单元素二维材料的原子与电子结构
孔龙娟, 李晖*
2017, 29 (4): 337-347 | DOI: 10.7536/PC170119
出版日期: 2017-04-15
摘要
石墨烯的发现带来了一场二维材料研究的风暴。直到今天,在石墨烯之外,实验学家又成功地在金属衬底上合成出了硅烯、锗烯和硼墨烯等具有奇特物理化学性质的二维材料。然而,人们发现由于衬底与材料的相互作用,这些衬底上的二维材料不论是原子结构还是电子结构都与理论预测的悬浮状态的二维材料相距甚远。因此,我们使用第一性原理计算去探索衬底与二维材料之间的作用,并且进一步揭示了衬底调控下的二维材料的原子与电子结构。本文将介绍作者与合作者今年来用第一性原理计算方法研究金属衬底上的硅烯、锗烯和硼墨烯等新型单元素二维材料的结构和性质,并对其未来的发展做出展望。
生物分子响应性高分子材料
王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*
2017, 29 (4): 348-358 | DOI: 10.7536/PC161217
出版日期: 2017-04-15
摘要
在智能高分子材料中,生物分子响应性高分子能够在糖类、多肽和酶等生物分子的刺激下发生宏观性质(如:体积、表面浸润性和硬度等)的大幅转变。生物分子响应性聚合物材料包括水凝胶、共聚物膜等类型,一般通过与生物分子间的氢键、分子间作用力等弱相互作用实现响应过程,在组织工程、功能材料、生物传感、药物可控释放等领域有广泛应用前景,吸引了大量科研人员的关注。与传统外源性刺激(温度、pH、光等)相比,生物分子作为刺激源的智能高分子材料具有更好的靶向性和生物相容性,能满足生物医用材料在人体内的应用,可以作为开发新一代精准药物的靶向释放平台。本文分别对糖类、蛋白、酶和DNA四类生物分子响应性高分子材料的结构设计、响应机制及相关应用进行概述,并对生物分子响应性高分子的发展方向作了展望。
溶液法大面积制备有机小分子场效应晶体管
陈禹夫, 李祥高, 肖殷, 王世荣
2017, 29 (4): 359-372 | DOI: 10.7536/PC161026
出版日期: 2017-04-15
摘要
作为柔性电子器件的基本构筑元件,有机场效应晶体管(OFETs)近年来受到深入研究并在高性能材料研发和器件多功能应用等方面取得了长足的进展。溶液加工技术以其温和的操作条件和灵活多样的工艺流程,成为实现高性能有机场效应晶体管器件低成本、大面积制备的优良选择。与聚合物相比,小分子有机半导体材料具有较高的固态堆积有序度及紧密程度和材料纯度,更易加工出性能优良的器件。然而小分子材料的成膜性较差,溶液加工潜能欠佳。如何通过不同的溶液加工技术制备取向均一的大面积连续小分子半导体薄膜,进而构筑高性能大面积器件阵列,成为了领域内的研究重点。本文概述了近年来可溶液加工且性能优良的小分子有机半导体材料研究进展,并依据工艺特点,分别介绍了溶液滴注、弯液面引导涂布和打印这三类可实现大面积制备的溶液加工技术,最后对溶液法大面积制备有机小分子场效应晶体管领域的发展前景进行了展望。
富锂层状氧化物正极材料:结构、容量产生机理及改性
张宁, 厉英
2017, 29 (4): 373-387 | DOI: 10.7536/PC161019
出版日期: 2017-04-15
摘要
锂离子电池作为新型的储能形式,缓解了人们对化石燃料的依赖和日益严峻的环境压力。富锂层状氧化物相比于传统正极材料,由于其低成本和大可逆容量的特性,被誉为最具发展潜力的下一代锂离子电池正极材料之一,尤其是在电动汽车和大规模储能电网领域的应用前景十分广阔。本文从材料的结构类型出发,主要介绍了固溶体结构和复合结构在晶格排布上的差异以及在鉴别这种差异时所采用的一系列表征手段。本文还总结了近年来提出的最具代表性的几种4.5 V电压平台产生机理,从不同角度解释了富锂层状氧化物在首次循环过程中表现出异常容量的现象,并结合现有研究阐述了各种机理。此外,也对阻碍富锂层状氧化物进一步发展的重大问题,包括首次不可逆容量损失、循环性能和倍率性能等进行了分析,讨论了表面尖晶石相对材料性能的影响,介绍了几种最典型的改性手段。最后,对富锂层状氧化物正极材料未来的研究方向进行了概述,展望其研究前景。
水环境中ZVI/氧化剂体系及其电子迁移作用机制
杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳
2017, 29 (4): 388-399 | DOI: 10.7536/PC170133
出版日期: 2017-04-15
摘要
利用零价铁(Zero-Valent Iron,ZVI)去除水环境中的污染物成为近年来的研究热点。当O2、H2O2等氧化剂存在时,ZVI、氧化剂与污染物之间的电子迁移机制非常复杂,ZVI和氧化剂之间的相互影响机制尚无定论。传统观点认为,O2会促进ZVI钝化膜的形成并阻断电子传递从而降低ZVI的还原性能。然而O2可在ZVI作用下通过双电子传输转化为H2O2,构成ZVI/O2类Fenton体系;在此基础上,利用额外加入H2O2、HSO5-、S2O82-等氧化剂,发展出了基于·OH或SO4·-的ZVI/氧化剂高级氧化体系(ZVI-AOPs),从而氧化降解有机污染物。有学者认为H2O2、KMnO4、S2O82-等强氧化剂的加入反而可以加快ZVI腐蚀和失电子的速率,从而提高ZVI去除重金属等污染物的还原性能,该研究结论对钝化膜机制提出了挑战。ZVI与氧化剂的联合作用还可以实现同时还原去除重金属和氧化降解有机物,也可以对卤代有机物等抗氧化污染物实现先还原后氧化去除。本文综述了基于ZVI/氧化剂的高级氧化或还原体系及其电子迁移机制,同时对ZVI与氧化剂的联合作用体系作一总结,并就值得深入研究的问题进行了展望。
体异质结型聚合物太阳能电池中的微观形貌调控方法
康建喜, 王世荣, 孙孟娜, 刘红丽, 李祥高
2017, 29 (4): 400-411 | DOI: 10.7536/PC161213
出版日期: 2017-04-15
摘要
体异质结型聚合物太阳能电池因具有成本低、质量轻、制备工艺简单和柔韧性好等优点,成为光伏技术领域的研究热点,其能量转化效率超过11%。体异质结层作为体异质结型聚合物太阳能电池的核心,其微观形貌影响体异质结型聚合物太阳能电池的开路电压、填充因子和短路电流,进而影响其能量转化效率。因此如何有效调控体异质结的微观形貌是提高体异质结型聚合物太阳能电池能量转换效率的关键问题之一。本文系统介绍了体异质结的形成过程,总结和论述近年发展的体异质结的微观形貌调控方法,以期为体异质结型聚合物太阳能电池的制备提供指导和借鉴。
N-杂环卡宾铂配合物的合成及其在有机反应中的应用
张凤香, 白赢*, 杨晓玲, 厉嘉云, 彭家建*
2017, 29 (4): 412-425 | DOI: 10.7536/PC161227
出版日期: 2017-04-15
摘要
N-杂环卡宾铂配合物作为催化剂广泛应用于诸多有机催化反应,表现出优良的催化性能及稳定的物理、化学性质,在一定程度上解决了传统催化剂使用过程中遇到的稳定性难题,是有机金属催化化学的研究热点之一。本文介绍了近年来N-杂环卡宾铂配合物的合成及其作为催化剂在不饱和化合物(烯烃、炔烃和酮等)硅氢加成反应、烯炔环异构化反应、烯烃氢胺化、烯烃硼化反应和炔烃水化反应等有机反应中的应用研究新成果和进展,分析了N-杂环卡宾铂配合物作为催化剂的催化机理和存在的不足,并对N-杂环卡宾铂配合物作为催化剂的应用前景进行了展望。
肼硼烷的合成及产氢
张世亮, 姚淇露, 卢章辉*
2017, 29 (4): 426-434 | DOI: 10.7536/PC161234
出版日期: 2017-04-15
摘要
肼硼烷(N2H4BH3,HB)的含氢量高达15.4 wt%,易于制备,物理化学性质稳定,是一种极具潜力的化学储氢材料。肼硼烷可以通过热解、醇解和水解产氢。特别是,通过水解其硼烷基和选择性裂解肼基实现完全产氢后,其对应的N2H4BH3-3H2O系统的有效理论质量储氢容量达10 wt%,远高于已知的氢源系统NaBH4-4H2O(7.3 wt%),NH3BH3-4H2O(5.9 wt%)和N2H4·H2O(8.0 wt%)。合适的催化剂是促使肼硼烷完全产氢的关键。本文简要地介绍了肼硼烷的合成与表征,重点综述了温和条件下肼硼烷的硼烷基水解和肼基分解产氢所使用的催化体系及其催化性能,对肼硼烷完全产氢的机理进行分析,并对肼硼烷催化产氢的应用前景进行展望。
嵌段共聚物的导向自组装
王倩倩, 吴立萍, 王菁, 王力元*
2017, 29 (4): 435-442 | DOI: 10.7536/PC161014
出版日期: 2017-04-15
摘要
嵌段共聚物由于其在纳米尺度的自组装能力,通过在薄膜中的自组装可以得到特征尺寸小于10 nm的周期性图形结构,近年来被广泛研究。导向自组装(Directed Self-Assembly,DSA)充分利用了嵌段共聚物在薄膜中进行自组装的优点,将“自下而上”的嵌段共聚物薄膜自组装技术和“自上而下”的光学光刻或电子束光刻等制备导向图形的技术结合起来。嵌段共聚物通过分子设计可得到层状、柱状、孔洞状等形貌多样的纳米结构。光刻模板表面的化学不均匀性使得嵌段共聚物和基底表面之间的相互作用可控,从而引导嵌段共聚物薄膜在一定的空间取向上定向排列。目前在导向自组装中常用的两种方法有直接在基底表面通过光刻制得前图形模板的制图外延法(几何控制)和基于对光刻模板表面进行化学修饰比如在模板表面接枝上一层中性层材料,从而通过化学诱导实现嵌段共聚物的定向自组装的化学外延法(化学控制)。导向自组装技术通过对微相结构的裁剪、表面修饰和尺寸控制,可以得到特征尺寸更小、密度更大、有序性更好的纳米图形,正逐渐成为最有前途的先进光刻技术方法之一。
功能化离子液体在聚酯PET降解与合成中的应用
程海东, 陈双俊*
2017, 29 (4): 443-449 | DOI: 10.7536/PC160546
出版日期: 2017-04-15
摘要
离子液体作为一类新兴的绿色环保型溶剂和催化剂,具有性质可调、溶解性好、催化活性高、热力学稳定性好和易于回收等优点而备受人们关注。聚酯具有多种优良性能,产能巨大,适用范围广,但造成的白色污染和资源浪费问题带来了严重的负面社会效应。通过化学回收方法,聚酯可降解为单体或低聚物从而被循环利用。本文概述了国内外废聚酯常用化学降解方法,包括水解法、甲醇降解法、乙醇降解法、乙二醇降解法等,并对主要化学降解方法的优缺点进行了比较。重点介绍了近年来功能化离子液体催化剂在聚对苯二甲酸乙二醇酯(PET)降解过程中的应用以及Lewis酸性离子液体催化乙二醇醇解PET机理,同时也描述了离子液体在聚酯合成环节中的应用。最后,总结了近年来国内外PET产能及消费量,探讨了离子液体催化剂在催化聚酯降解与合成中面临的诸多挑战。
硬组织植入生物活性聚醚醚酮复合材料
刘吕花, 郑延延*, 张丽芳, 熊成东
2017, 29 (4): 450-458 | DOI: 10.7536/PC161201
出版日期: 2017-04-15
摘要
聚醚醚酮(PEEK)具有优良的机械性能、良好的生物相容性和耐腐蚀性等特点,其弹性模量和人体皮质骨较为接近,有可能替代金属材料应用在硬组织修复与替换领域。然而,PEEK本身是生物惰性材料,PEEK植入体与骨组织之间的骨整合能力较差,在一定程度上限制了其在硬组织修复与替换领域的应用。目前研究者主要将磷酸钙(CaP)、生物活性玻璃(BGs)和硅酸钙(CS)等生物活性陶瓷添加到PEEK基体中制备复合材料以改善其生物活性,提高PEEK植入体与骨组织之间的骨整合能力。但这些生物活性陶瓷在改善PEEK生物活性的同时,降低了其优异的力学性能。如何在保持PEEK力学性能的同时提高其生物活性成为目前研究的热点。本文综述了近些年用于硬组织植入的生物活性聚醚醚酮复合材料的制备技术、力学及生物学性能等方面的研究进展及现状,并对其发展提出了展望。