English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 373-387 DOI: 10.7536/PC161019 前一篇   后一篇

• 综述 •

富锂层状氧化物正极材料:结构、容量产生机理及改性

张宁1,2, 厉英1,2*   

  1. 1. 东北大学冶金学院 沈阳 110819;
    2. 东北大学辽宁省冶金传感器及技术重点实验室 沈阳 110819
  • 收稿日期:2016-10-15 修回日期:2017-02-10 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 厉英,e-mail:liying@mail.neu.edu.cn E-mail:liying@mail.neu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51274057,51474057)资助

Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications

Ning Zhang1,2, Ying Li1,2*   

  1. 1. School of Metallurgy, Northeastern University, Shenyang 110819, China;
    2. Liaoning Key Laboratory for Metallurgical Sensor and Technology, Northeastern University, Shenyang 110819, China
  • Received:2016-10-15 Revised:2017-02-10 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51274057, 51474057).
锂离子电池作为新型的储能形式,缓解了人们对化石燃料的依赖和日益严峻的环境压力。富锂层状氧化物相比于传统正极材料,由于其低成本和大可逆容量的特性,被誉为最具发展潜力的下一代锂离子电池正极材料之一,尤其是在电动汽车和大规模储能电网领域的应用前景十分广阔。本文从材料的结构类型出发,主要介绍了固溶体结构和复合结构在晶格排布上的差异以及在鉴别这种差异时所采用的一系列表征手段。本文还总结了近年来提出的最具代表性的几种4.5 V电压平台产生机理,从不同角度解释了富锂层状氧化物在首次循环过程中表现出异常容量的现象,并结合现有研究阐述了各种机理。此外,也对阻碍富锂层状氧化物进一步发展的重大问题,包括首次不可逆容量损失、循环性能和倍率性能等进行了分析,讨论了表面尖晶石相对材料性能的影响,介绍了几种最典型的改性手段。最后,对富锂层状氧化物正极材料未来的研究方向进行了概述,展望其研究前景。
The lithium-ion battery has mitigated the reliance on fossil fuels and alleviated the increasing pressure on environment as a new form of energy storage. Compared with other conventional cathodes, lithium-rich layered oxide is considered to be one of the most potential candidates for the next generation cathode materials due to its low cost and higher reversible capacity, which is a promising application especially in the fields of electric vehicles and large-scale energy storage grids. In this review, we start from the point of the structures of lithium-rich layered oxides then mainly focus on the differences of lattice configuration between a solid solution structure and a "composite" structure. Various characterization methods which are used to identify these differences are introduced as well. The origins of the 4.5 V plateau and several representative mechanisms proposed in recent years are summarized. From different perspective, these mechanisms explain the origin of the abnormal capacity of lithium-rich layered oxides when they are charged-discharged at the first cycle. According to the current research, the validity of these mechanisms is elaborated. Meanwhile, some major problems which hinder the further development of lithium-rich layered oxides, including irreversible capacity loss at first cycle, cycle performance, rate capability, are introduced. At the same time, the effects generated by the surface spinel phase and several typical modification methods are elaborated. Finally, the future development and the prospects of lithium-rich layered oxides as cathode materials for lithium-ion batteries are also proposed.

Contents
1 Introduction
2 Structures
2.1 Solid solution structure
2.2 “Composite” structure
3 Origins of the 4.5 V plateau
3.1 “Oxygen loss” mechanism
3.2 “Reversible oxygen redox” mechanism
3.3 “Proton exchange” mechanism
3.4 Other mechanisms
4 Capacity loss mechanisms and modifications
4.1 Reasons and modifications of irreversible capacity loss during first cycle
4.2 Reasons and modifications of voltage decay upon cycles
4.3 Reasons and modifications of poor C-rate capability
5 Conclusion

中图分类号: 

()
[1] Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.
[2] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.
[3] Ellis B L, Lee K T, Nazar L F. Chem. Mater., 2010, 22(3): 691.
[4] Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.
[5] Dou S. J. Solid State Electro., 2013, 17(4): 911.
[6] Park J S, Mane A U, Elam J W, Croy J R. Chem. Mater., 2015, 27(6): 1917.
[7] Fu Y, Jiang H, Hu Y, Dai Y, Zhang L, Li C. Ind. Eng. Chem. Res., 2015, 54(15): 3800.
[8] Ha S H, Lee Y J. Chem.-Eur. J., 2015, 21(5): 2132.
[9] Fan J, Li G, Luo D, Fu C, Li Q, Zheng J, Li L. Electrochim. Acta, 2015, 173: 7.
[10] Shunmugasundaram R, Senthil Arumugam R, Dahn J R. Chem. Mater., 2015, 27(3): 757.
[11] Rozier P, Tarascon J M. J. Electrochem. Soc., 2015, 162(14): A2490.
[12] Hy S, Liu H, Zhang M, Qian D, Hwang B J, Meng Y S. Energy Environ. Sci., 2016, 9(6): 1931.
[13] Ammundsen B, Paulsen J. Adv. Mater., 2001, 13(12/13): 943.
[14] Johnson C S, Kim J S, Lefief C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun., 2004, 6(10): 1085.
[15] Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. J. Mater. Chem., 2005, 15(23): 2257.
[16] Shen C H, Huang L, Lin Z, Shen S Y, Wang Q, Su H, Fu F, Zheng X M. ACS Appl. Mater. Inter., 2014, 6(15): 13271.
[17] Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey D G, Wei W. J. Mater. Chem. A, 2015, 3(7): 3995.
[18] Ates M N, Mukerjee S, Abraham K M. RSC Adv., 2015, 5(35): 27375.
[19] Lu Z, Chen Z, Dahn J. Chem. Mater., 2003, 15(16): 3214.
[20] Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T. J. Electrochem. Soc., 2004, 151(10): A1545.
[21] Meng Y S, Ceder G, Grey C P, Yoon W S, Shao-Horn Y. Electrochem. Solid-State Lett., 2004, 7(6): A155.
[22] Boulineau A, Simonin L, Colin J F, Canévet E, Daniel L, Patoux S. Chem. Mater., 2012, 24(18): 3558.
[23] Lu Z, MacNeil D D, Dahn J R. Electrochem. Solid-State Lett., 2001, 4(11): A191.
[24] Lu Z, Beaulieu L Y, Donaberger R A, Thomas C L, Dahn J R. J. Electrochem. Soc., 2002, 149(6): A778.
[25] Mohanty D, Gabrisch H. J. Power Sources, 2012, 220: 405.
[26] Wen J G, Bareño J, Lei C H, Kang S H, Balasubramanian M, Petrov I, Abraham D P. Solid State Ionics, 2011, 182(1): 98.
[27] Gu M, Genc A, Belharouak I, Wang D, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C. Chem. Mater., 2013, 25(11): 2319.
[28] Kim J S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W, Grey C P. Chem. Mater., 2004, 16(10): 1996.
[29] Park K S, Cho M H, Jin S J, Song C H, Nahm K S. J. Power Sources, 2005, 146(1/2): 281.
[30] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17(30): 3112.
[31] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006, 8(9): 1531.
[32] Ammundsen B, Paulsen J, Davidson I, Liu R S, Shen C H, Chen J M, Jang L Y, Lee J F. J. Electrochem. Soc., 2002, 149(4): A431.
[33] Jarvis K, Deng Z, Allard L, Manthiram A, Ferreira P. Microsc. Microanal., 2011, 17(S2): 1578.
[34] Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. Chem. Mater., 2011, 23(16): 3614.
[35] Koga H, Croguennec L, Mannessiez P, Ménétrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C. J. Phys. Chem. C, 2012, 116(25): 13497.
[36] Genevois C, Koga H, Croguennec L, Ménétrier M, Delmas C, Weill F. J. Phys. Chem. C, 2015, 119(1): 75.
[37] Pan C, Lee Y J, Ammundsen B, Grey C P. Chem. Mater., 2002, 14(5): 2289.
[38] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. Appl. Phys. Lett., 2007, 91(5): 054103.
[39] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. J. Appl. Phys., 2008, 103(10): 104911.
[40] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. Electrochem. Solid-State Lett., 2008, 11(11): A183.
[41] Santhanam R, Jones P, Sumana A, Rambabu B. J. Power Sources, 2010, 195(21): 7391.
[42] Yu X, Lyu Y, Gu L, Wu H, Bak S M, Zhou Y, Amine K, Ehrlich S N, Li H, Nam K W, Yang X Q. Adv. Energy Mater., 2014, 4(5): 1300950.
[43] Bareño J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Petrov I, Abraham D P. Chem. Mater., 2011, 23(8): 2039.
[44] Yu H, So Y G, Kuwabara A, Tochigi E, Shibata N, Kudo T, Zhou H, Ikuhara Y. Nano Lett., 2016, 16(5): 2907.
[45] Robertson A D, Bruce P G. Electrochem. Solid-State Lett., 2004, 7(9): A294.
[46] Saint J A, Doeff M M, Reed J. J. Power Sources, 2007, 172(1): 189.
[47] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H, Chen L. Adv. Energy Mater., 2013, 3(10): 1358.
[48] Croy J R, Park J S, Dogan F, Johnson C S, Key B, Balasubramanian M. Chem. Mater., 2014, 26(24): 7091.
[49] Jacob C, Jian J, Su Q, Verkhoturov S, Guillemette R, Wang H. ACS Appl. Mater. Inter., 2015, 7(4): 2433.
[50] Ruther R E, Dixit H, Pezeshki A M, Sacci R L, Cooper V R, Nanda J, Veith G M. J. Phys. Chem. C, 2015, 119(32): 18022.
[51] Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H. Phys. Chem. Chem. Phys., 2012, 14(18): 6584.
[52] Li Q, Li G, Fu C, Luo D, Fan J, Xie D, Li L. J. Mater. Chem. A, 2015, 3(19): 10592.
[53] Dai D, Li B, Tang H, Chang K, Jiang K, Chang Z, Yuan X. J. Power Sources, 2016, 307: 665.
[54] Shimoda K, Minato T, Nakanishi K, Komatsu H, Matsunaga T, Tanida H, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z. J. Mater. Chem. A, 2016, 4(16): 5909.
[55] Kalyani P, Chitra S, Mohan T, Gopukumar S. J. Power Sources, 1999, 80(1): 103.
[56] Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K. J. Mater. Chem., 2011, 21(27): 10179.
[57] Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149 (7): A815.
[58] Arunkumar T, Wu Y, Manthiram A. Chem. Mater., 2007, 19(12): 3067.
[59] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128(26): 8694.
[60] Xu B, Fell C R, Chi M, Meng Y S. Energ. Environ. Sci., 2011, 4(6): 2223.
[61] Johnson C S, Li N, Lefief C, Vaughey J T, Thackeray M M. Chem. Mater., 2008, 20(19): 6095.
[62] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2007, 10(6): A151.
[63] Wu Y, Vadivel Murugan A, Manthiram A. J. Electrochem. Soc., 2008, 155(9): A635.
[64] Wu Y, Manthiram A. Solid State Ionics, 2009, 180(1): 50.
[65] Deng Z Q, Manthiram A. J. Phys. Chem. C, 2011, 115(14): 7097.
[66] Wang C C, Manthiram A. J. Mater. Chem. A, 2013, 1(35): 10209.
[67] Xiang X, Knight J C, Li W, Manthiram A. J. Phys. Chem. C, 2014, 118(38): 21826.
[68] Knight J C, Nandakumar P, Kan W H, Manthiram A. J. Mater. Chem. A, 2015, 3(5): 2006.
[69] Johnson C S, Li N, Lefief C, Thackeray M M. Electrochem. Commun., 2007, 9(4): 787.
[70] Koyama Y, Tanaka I, Nagao M, Kanno R. J. Power Sources, 2009, 189(1): 798.
[71] Shin Y, Ding H, Persson K A. Chem. Mater., 2016, 28(7): 2081.
[72] Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S. J. Am. Chem. Soc., 2011, 133(12): 4404.
[73] Hong J, Lim H D, Lee M, Kim S W, Kim H, Oh S T, Chung G C, Kang K. Chem. Mater., 2012, 24(14): 2692.
[74] Ito A, Sato Y, Sanada T, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2011, 196(16): 6828.
[75] Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C. J. Power Sources, 2013, 236: 250.
[76] Koga H, Croguennec L, Menetrier M, Douhil K, Belin S, Bourgeois L, Suard E, Weill F, Delmas C. J. Electrochem. Soc., 2013, 160(6): A786.
[77] Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C, Belin S. J. Phys. Chem. C, 2014, 118(11): 5700.
[78] Oishi M, Yogi C, Watanabe I, Ohta T, Orikasa Y, Uchimoto Y, Ogumi Z. J. Power Sources, 2015, 276: 89.
[79] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L, Tarascon J M. Nat. Mater., 2013, 12(9): 827.
[80] Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash A S, Doublet M L, Hemalatha K, Tarascon J M. Chem. Mater., 2013, 25(7): 1121.
[81] McCalla E, Abakumov A M, Saubanère M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, Van Tendeloo G. Dominko R, Tarascon J M. Science, 2015, 350(6267): 1516.
[82] Robertson A D, Bruce P G. Chem. Commun., 2002, (23): 2790.
[83] Rossouw M, Thackeray M. Mater. Res. Bull., 1991, 26(6): 463.
[84] Robertson A D, Bruce P G. Chem. Mater., 2003, 15(10): 1984.
[85] Armstrong A R, Robertson A D, Bruce P G. J. Power Sources, 2005, 146(1/2): 275.
[86] Choi J, Alvarez E, Arunkumar T A, Manthiram A. Electrochem. Solid-State Lett., 2006, 9(5): A241.
[87] Rana J, Stan M, Kloepsch R, Li J, Schumacher G, Welter E, Zizak I, Banhart J, Winter M. Adv. Energy Mater., 2014, 4(5): 1300998.
[88] Hong Y S, Park Y J, Ryu K S, Chang S H, Kim M G. J. Mater. Chem., 2004, 14(9): 1424.
[89] Pasero D, McLaren V, De Souza S, West A. Chem. Mater., 2005, 17(2): 345.
[90] Jain G, Yang J, Balasubramanian M, Xu J J. Chem. Mater., 2005, 17(15): 3850.
[91] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. J. Power Sources, 2006, 153(2): 258.
[92] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008, 155(4): A269.
[93] Li G R, Feng X, Ding Y, Ye S H, Gao X P. Electrochim. Acta, 2012, 78: 308.
[94] Zhao Y, Zhao C, Feng H, Sun Z, Xia D. Electrochem. Solid-State Lett., 2011, 14(1): A1.
[95] Zhang X, Belharouak I, Li L, Lei Y, Elam J W, Nie A, Chen X, Yassar R S, Axelbaum R L. Adv. Energy Mater., 2013, 3(10): 1299.
[96] Yu R, Lin Y, Huang Z. Electrochim. Acta, 2015, 173: 515.
[97] Liu X, Liu J, Huang T, Yu A. Electrochim. Acta, 2013, 109: 52.
[98] Qiao Q Q, Zhang H Z, Li G R, Ye S H, Wang C W, Gao X P. J. Mater. Chem. A, 2013, 1(17): 5262.
[99] Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R. ACS Appl. Mater. Inter., 2015, 7(6): 3773.
[100] Zhang X, Sun S, Wu Q, Wan N, Pan D, Bai Y. J. Power Sources, 2015, 282: 378.
[101] Cong L N, Gao X G, Ma S C, Guo X, Zeng Y P, Tai L H, Wang R S, Xie H M, Sun L Q. Electrochim. Acta, 2014, 115: 399.
[102] Shi S J, Tu J P, Zhang Y J, Zhang Y D, Zhao X Y, Wang X L, Gu C D. Electrochim. Acta, 2013, 108: 441.
[103] Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S. J. Power Sources, 2014, 247: 20.
[104] Meng H, Jin H, Gao J, Zhang L, Xu Q. J. Electrochem. Soc., 2014, 161(10): A1564.
[105] Martha S K, Nanda J, Kim Y, Unocic R R, Pannala S, Dudney N J. J. Mater. Chem. A, 2013, 1(18): 5587.
[106] Sun Y Y, Li F, Qiao Q Q, Cao J S, Wang Y L, Ye S H. Electrochim. Acta, 2015, 176: 1464.
[107] Kim I T, Knight J C, Celio H, Manthiram A. J. Mater. Chem. A, 2014, 2(23): 8696.
[108] Shi S, Tu J, Tang Y, Liu X, Zhang Y, Wang X, Gu C. Electrochim. Acta, 2013, 88: 671.
[109] Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N. Surf. Coat. Technol., 2013, 235: 570.
[110] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11(1): 84.
[111] Gao J, Manthiram A. J. Power Sources, 2009, 191(2): 644.
[112] Lee E S, Manthiram A. J. Electrochem. Soc., 2011, 158(1): A47.
[113] Laszczynski N, von Zamory J, Kalhoff J, Loeffler N, Chakravadhanula V S K, Passerini S. ChemElectroChem, 2015, 2(11): 1768.
[114] Song B, Liu Z, Lai M O, Lu L. Phys. Chem. Chem. Phys., 2012, 14(37): 12875.
[115] Yu S H, Yoon T, Mun J, Park S, Kang Y S, Park J H, Oh S M, Sung Y E. J. Mater. Chem. A, 2013, 1(8): 2833.
[116] Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang J G. Nano Lett., 2013, 13(8): 3824.
[117] Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S. Nano Lett., 2013, 13(8): 3857.
[118] Bettge M, Li Y, Gallagher K, Zhu Y, Wu Q, Lu W, Bloom I, Abraham D P. J. Electrochem. Soc., 2013, 160(11): A2046.
[119] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet M L, Vezin H, Laisa C P, Prakash A.S, Goubeau D, VanTendeloo G, Tarascon J M. Nat. Mater., 2015, 14(2): 230.
[120] Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M. Angew. Chem. Int. Ed. Engl., 2015, 54(44): 13058.
[121] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Wang C. ACS Nano, 2012, 7(1): 760.
[122] Wang Y, Bie X, Nikolowski K, Ehrenberg H, Du F, Hinterstein M, Wang C, Chen G, Wei Y. J. Phys. Chem. C, 2013, 117(7): 3279.
[123] Ates M N, Jia Q, Shah A, Busnaina A, Mukerjee S, Abraham K M. J. Electrochem. Soc., 2013, 161(3): A290.
[124] Yu D Y W, Yanagida K, Nakamura H. J. Electrochem. Soc., 2010, 157(11): A1177.
[125] Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2010, 195(2): 567.
[126] Ito A, Shoda K, Sato Y, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2011, 196(10): 4785.
[127] Song B, Liu H, Liu Z, Xiao P, Lai M O, Lu L. Sci. Rep., 2013, 3: 3094.
[128] Song B, Lai M O, Liu Z, Liu H, Lu L. J. Mater. Chem. A, 2013, 1(34): 9954.
[129] Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L. Adv. Energy Mater., 2014, 4(11): 1400062.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.