English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 435-442 DOI: 10.7536/PC161014 前一篇   后一篇

• 综述 •

嵌段共聚物的导向自组装

王倩倩, 吴立萍, 王菁, 王力元*   

  1. 北京师范大学化学学院 北京 100875
  • 收稿日期:2016-10-11 修回日期:2016-12-27 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 王力元,e-mail:wly@bnu.edu.cn E-mail:wly@bnu.edu.cn

Directed Self-Assembly of Block Copolymers

Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*   

  1. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2016-10-11 Revised:2016-12-27 Online:2017-04-15 Published:2017-03-31
嵌段共聚物由于其在纳米尺度的自组装能力,通过在薄膜中的自组装可以得到特征尺寸小于10 nm的周期性图形结构,近年来被广泛研究。导向自组装(Directed Self-Assembly,DSA)充分利用了嵌段共聚物在薄膜中进行自组装的优点,将“自下而上”的嵌段共聚物薄膜自组装技术和“自上而下”的光学光刻或电子束光刻等制备导向图形的技术结合起来。嵌段共聚物通过分子设计可得到层状、柱状、孔洞状等形貌多样的纳米结构。光刻模板表面的化学不均匀性使得嵌段共聚物和基底表面之间的相互作用可控,从而引导嵌段共聚物薄膜在一定的空间取向上定向排列。目前在导向自组装中常用的两种方法有直接在基底表面通过光刻制得前图形模板的制图外延法(几何控制)和基于对光刻模板表面进行化学修饰比如在模板表面接枝上一层中性层材料,从而通过化学诱导实现嵌段共聚物的定向自组装的化学外延法(化学控制)。导向自组装技术通过对微相结构的裁剪、表面修饰和尺寸控制,可以得到特征尺寸更小、密度更大、有序性更好的纳米图形,正逐渐成为最有前途的先进光刻技术方法之一。
Block Copolymers (BCPs) have been investigated widely in recent years due to their ability of self-assembly in nanoscale and periodical patterns with feature sizes below 10 nm in thin films. Making use of the advantages of self-assembly of block copolymers in thin films, directed self-assembly (DSA) of block copolymers combines the "bottom to top" self-assembly of block copolymers in films and the "up to down" optical lithography or e-beam lithography technologies to prepare guide templates. Morphology diversity of nanostructures such as layer, columnar and holes can be obtained by molecular design of block copolymers. The pattern-wise introduction of chemical heterogeneity on the substrate surface allows the energetic of the polymer-surface interaction to be controlled in a spatially localized way that directs the alignment of block copolymer domains in films. Two main methods of self-assembly considered so far have been the grapho-epitaxy (topographic guiding patterns), which is based on creating pre-pattern on the surface of the template by lithography, and the chemical-epitaxy (chemical guiding patterns), which is based on the surface chemical modification of the template to direct the self-assembly process for instance by grafting a neutral layer material. Consequently, with higher resolution, denser and better ordered nano-patterns can be fabricated by tailoring, surface modification and size-control on micro phase and DSA is becoming one of the most promising advanced lithography technologies.

Contents
1 Introduction
2 Micro-phase separations of block copolymers (BCPs)
3 Directed self-assembly (DSA) of BCPs in thin films
3.1 Preparation of pre-templates
3.2 Control of template surface properties on self-assembly
3.3 DSA methods: grapho-epitaxy and chemcal-epitaxy
3.4 Other factors affecting the DSA morphology
3.5 Characterization and evaluation methods
4 Conclusion

中图分类号: 

()
[1] Kim H C, Park S M, Hinsberg W D. Chem. Rev., 2010, 110: 146.
[2] Goren M, Lennox R B. Nano Lett., 2001, 12: 735.
[3] Lu W, Lieber C M. Nature Materials, 2007, 6: 841.
[4] Boer B, Stalmach U, Nijland H, Hadziioannou G. Adv. Mater., 2000, 12: 1581.
[5] 黄永民(Huang Y M),韩霞(Han X),肖兴庆(Xiao X Q). 功能高分子学报(Journal of Functional Polymers), 2008, 2: 102.
[6] Archambault S, Girardot C, Salaün M, Delalande M, Böhme S, Cunge G, Pargon E, Joubert O, Zelsmann M. Proc. of SPIE, 2014, 9054: 90540O.
[7] Cheng J Y, Zhang F, Smith H I, Vancso G, Ross C A. Adv. Mater., 2006, 18: 597.
[8] Welander A M, Kang H M, Stuen K O, Solak H H, Nealey P F. Macromolecules, 2008, 41: 2759.
[9] Cheng J Y, Rettner C T, Sanders D P, Kim H C, Hinsberg W D. Adv. Mater., 2008, 20: 3155.
[10] Chevalier X, Tiron R, Upreti T, Gaugiran S, Navarro C, Magnet S, Chevolleau T, Cunge G, Fleury G. Proc. of SPIE, 2011, 7970: 79700Q.
[11] 杨荣巧(Yang Y Q). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2009
[12] Park S, Lee D H, Xu J, Kim B, Hong S W, Jeong U, Xu T, Russell T P. Science, 2009, 323: 1030.
[13] Sun Z W, Chen Z B, Zhang W X, Choi J, Huang C, Jeong G, Coughlin E B, Hsu Y, Yang X M, Lee K Y, Kuo D S, Xiao S G, Russell T P. Adv. Mater., 2015, 27: 4364.
[14] Sivaniah E, Matsubara S, Zhao Y, Hashimoto T, Fukunaga K, Kramer E J, Mates T E. Macromolecules, 2008, 41: 2584.
[15] Jung Y S, Jung W, Ross C A. Nano Lett., 2008, 8: 2975.
[16] Rodwogin M D, Spanjers C S, Leighton C, Hillmyer M A. ACS Nano, 2010, 4: 725.
[17] Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv. Mater., 2015, 27: 261.
[18] Cheng J Y, Sanders D P, Truong H D, Harrer S, Friz A, Holmes S, Colburn M, Hinsberg W D. ACS Nano, 2010, 4: 4815.
[19] Lawson R A, Ludovice P J, Henderson C L. Proc. of SPIE, 2011, 7970: 79700N.
[20] Solak H H, David C, Gobrecht J, Golovkina V, Cerrina F, Kim S O, Nealey P F. Microelectron. Eng., 2003, 67: 56.
[21] Oria L, Luzuriagab A R, Chevalierc X, Alduncinb J A, Mecerreyesb D, Tironc R, Gaugiranc S. Proc. of SPIE, 2011, 7970: 79700P.
[22] Son J G, Son M, Moon K J, Lee B H, Myoung J M, Strano M S, Ham M H, Ross C A. Adv. Mater., 2013, 25: 4723.
[23] Seokhan P, Je MoonY, Uday Narayan M, Hyoung-Seok M, Hyeong M J, Sang O K. Nanotechnology, 2014, 25: 014008.
[24] Cummins C, Gangnaik A, Kelly R A, Hydes A J, Connell J O, Petkov N, Georgiev Y M, Borah D, Holmes J D, Morris M A. Chem. Mater., 2015, 27: 6091.
[25] Baughman R H, Zakhidov A A, Heer W A. Science, 2002, 297: 787.
[26] Mansky P, Liu Y, Huang E, Russell T P, Hawker C. Science, 1997, 275: 1458.
[27] Peters R D, Yang X M, Kim T K, Sohn B H, Nealey P F. Langmuir, 2000, 16: 4625.
[28] Cui Y, Bjork M T, Liddle J A, Sonnichsen C, Boussert B, Alivisatos A P. Nano Letters, 2004, 4: 1093.
[29] Amundson K, Helfand E, Quan X N. Macromolecules, 1993, 26: 2698.
[30] Albrecht T T, Schotter J, Kastle G A, Emley N, Shibauchi T, Guarini K, Black C T, Tuominen M T, Russell T P. Science, 2000, 290: 2126.
[31] Keller A, Pedemonte E, Willmouth F M. Nature, 1970, 225: 538.
[32] Park S M, Stoykovich M P, Ruiz R, Zhang Y, Black C T, Nealey P F. Adv. Mater., 2007, 19: 607.
[33] Russell T P, Coulon G, Deline V R, Miller D C. Macromolecules, 1989, 22: 4600.
[34] Segalman R A, Yokoyama H, Kramer E J. Adv. Mater., 2001, 13: 1152.
[35] 魏玮(Wei W), 刘敬成(Liu J C), 李虎(Li H), 穆启道(Mu Q D), 刘晓亚(Liu X Y). 化学进展(Progress in Chemistry), 2014, 26(11): 1867.
[36] Jeong S J, Kim S O. J. Mater. Chem., 2011, 21: 5856.
[37] Liu C C, Han E, Onses M S, Thode C J, Ji S, Gopalan P, Nealey P F. Macromolecules, 2011, 44 : 1876.
[38] Khaira G S, Qin J, Garner G P, Xiong S, Wan L, Ruiz R, Jaeger H M, Nealey P F, de Pablo J J. ACS Macro Lett., 2014, 3: 747.
[39] Kim S, Nealey P F, Bates F S. Nano Lett., 2014, 14: 148.
[40] Williamson L D, Seidel R N, Chen X X, Suh H S, Delgadillo P S, Gronheid R, Nealey P F. ACS Appl. Mater. Iterfaces, 2016, 8: 2704.
[41] In I, La Y H, Park S M, Nealey P F, Gopalan P. Langmuir, 2006, 22: 7855.
[42] Ryu D Y, Wang J Y, Lavery K A, Drockenmuller E, Satija S K, Hawker C J, Russell T P. Macromolecules, 2007, 40: 4296.
[43] Song R Q, Hoheisel T N, Sai H, Li Z H, Carloni J D, Wang S T, Youngman R E, Baker S P, Gruner S M, Wiesner U, Estroff L A. Chem. Mater., 2016, 28: 838.
[44] Lee D E, Je N J, Yoo S I, Lee D H. Langmuir, 2015, 31: 12929.
[45] Borah D, Rasappa S, Salaun M, Zellsman M, Lorret O, Liontos G, Ntetsikas K, Avgeropoulos A, Morris M A. Adv. Funct. Mater., 2015, 25: 3425.
[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[3] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[4] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[5] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[6] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[7] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[8] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[9] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[10] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[11] 盛玉萍, 闫南, 朱雨田, 安健. 嵌段共聚物在选择性溶剂中自组装过程的计算机模拟[J]. 化学进展, 2014, 26(0203): 358-365.
[12] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
[13] 王志鹏, 袁金颖* . Diels-Alder反应在构建特殊结构高分子中的应用[J]. 化学进展, 2012, 24(12): 2342-2351.
[14] 何乃普, 王荣民. 蛋白质与高分子的自组装[J]. 化学进展, 2012, 24(01): 94-100.
[15] 夏荣捷, 金明, 万德成, 潘海燕, 浦鸿汀. 双光子技术在光生酸剂中的应用研究[J]. 化学进展, 2011, 23(9): 1854-1861.
阅读次数
全文


摘要

嵌段共聚物的导向自组装