English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 359-372 DOI: 10.7536/PC161026 前一篇   后一篇

• 综述 •

溶液法大面积制备有机小分子场效应晶体管

陈禹夫1,2, 李祥高1,2, 肖殷1,2, 王世荣1,2*   

  1. 1. 天津大学化工学院 天津 300350;
    2. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2016-10-20 修回日期:2017-02-11 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 王世荣,e-mail:wangshirong@tju.edu.cn E-mail:wangshirong@tju.edu.cn
  • 基金资助:
    国家重点研发计划(No.2016YFB0401303)和天津市自然科学基金项目(No.16JCZDJC37100)资助

Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors

Yufu Chen1,2, Xianggao Li1,2, Yin Xiao1,2, Shirong Wang1,2*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University,Tianjin 300350, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China
  • Received:2016-10-20 Revised:2017-02-11 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the National Key R&D Program of China (No. 2016YFB0401303) and the Natural Science Foundation of Tianjin (No.16JCZDJC37100).
作为柔性电子器件的基本构筑元件,有机场效应晶体管(OFETs)近年来受到深入研究并在高性能材料研发和器件多功能应用等方面取得了长足的进展。溶液加工技术以其温和的操作条件和灵活多样的工艺流程,成为实现高性能有机场效应晶体管器件低成本、大面积制备的优良选择。与聚合物相比,小分子有机半导体材料具有较高的固态堆积有序度及紧密程度和材料纯度,更易加工出性能优良的器件。然而小分子材料的成膜性较差,溶液加工潜能欠佳。如何通过不同的溶液加工技术制备取向均一的大面积连续小分子半导体薄膜,进而构筑高性能大面积器件阵列,成为了领域内的研究重点。本文概述了近年来可溶液加工且性能优良的小分子有机半导体材料研究进展,并依据工艺特点,分别介绍了溶液滴注、弯液面引导涂布和打印这三类可实现大面积制备的溶液加工技术,最后对溶液法大面积制备有机小分子场效应晶体管领域的发展前景进行了展望。
Organic field-Effect transistors (OFETs) as the primary building blocks of flexible electronics have been intensively studied, and considerable progresses on high performance materials development and multifunctional application have been recently made. Attributed to mild operating conditions and versatile manufacturing processes, solution process technologies become the appreciable choice for large-scale, low-cost OFETs fabrication. Compared with conjugated polymers, small molecular organic semiconductors reach a high degree of stacking density, ordering degree and material purity, which facilitate high performance devices fabrication. However, small molecular semiconductors bear poor film-forming ability, which hinders its solution processing technology development. Consequently, how to fabricate homogeneous, large area, well-defined small molecular semiconductors film, and large-scale, high performance devices array by different solution processing technologies becomes the hotspot in this field. This review provides a brief overview of recent advances in the solution processable small molecular organic semiconductors with high performance. Besides, according to the technology characteristics, the large-scale OFETs solution processing technologies are classified into drop casting, meniscus guided coating, and printing. Finally, the prospects and challenge for solution processed large-scale small molecular OFETs are also discussed.

Contents
1 Introduction
2 Solution processable small molecular organic semiconductors
2.1 p-Type small molecular organic semiconductors
2.2 n-Type small molecular organic semiconductors
2.3 Ambipolar small molecular organic semiconductors
3 Solution processing technologies of large-scale small molecular OFETs
3.1 Drop casting
3.2 Meniscus guided coating
3.3 Printing
3.4 Thin-film post-processing technology
4 Conclusion and outlook

中图分类号: 

()
[1] Mandal S, Noh Y. Semicond. Sci. Technol., 2015, 30(6): 64003.
[2] Khim D, Baeg K, Kang M, Lee S, Kim N, Kim J, Lee G, Liu C, Kim D, Noh Y. ACS Appl. Mater. Interfaces, 2013, 5(23): 12579.
[3] Uno M, Cha B, Kanaoka Y, Takeya J. Org. Electron., 2015, 20: 119.
[4] Kim D, Quang Trung T, Hwang B, Kim J, Jeon S, Bae J, Park J, Lee N. Sci. Rep., 2015, 5: 12705.
[5] Lai S, Barbaro M, Bonfiglio A. Sens. Actuators B-Chem., 2016, 233: 314.
[6] Jeon P J, Lee K, Park E Y, Im S, Bae H. Org. Electron., 2016, 32: 208.
[7] 柴玉华(Chai Y H), 郭玉秀(Guo Y X), 卞伟(Bian W),李雯(Li W), 杨涛(Yang T), 仪明东(Yi M D), 范曲立(Fan Q L), 解令海(Xie L H), 黄维(Huang W). 物理学报(Acta Physica Sinica), 2014, 63(2): 263.
[8] Fiore V, Battiato P, Abdinia S, Jacobs S, Chartier I, Coppard R, Klink G, Cantatore E, Ragonese E, Palmisano G. IEEE Trans. Circuits Syst. I, 2015, 62(6): 1668.
[9] Noh J, Jung M, Jung Y, Yeom C, Pyo M, Cho G. Proc. IEEE, 2015, 103(4): 554.
[10] 宋静怡(Song J Y), 江浪(Jiang L), 董焕丽(Dong H L), 胡文平(Hu W P). 化学进展(Progress in Chemistry), 2013,(1): 12.
[11] Li Y, Sun H, Shi Y, Tsukagoshi K. Sci. Technol. Adv. Mater., 2014, 15(2): 24203.
[12] Diao Y, Tee B C, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T H, Xue G, Mannsfeld S C B, Bao Z. Nat. Mater., 2013, 12(7): 665.
[13] Li H, Tee B C, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z. J. Am. Chem. Soc., 2012, 134(5): 2760.
[14] Yun H, Kang S, Xu Y, Kim S O, Kim Y, Noh Y, Kwon S. Adv. Mater., 2014, 26(43): 7300.
[15] Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett., 2014, 14(5): 2764.
[16] Sun H, Wang Q, Qian J, Yin Y, Shi Y, Li Y. Semicond. Sci. Technol., 2015, 30(5): 54001.
[17] Kudo K, Yamashina M, Moriizumi T. Jpn. J. Appl. Phys., 1984, 23(1): 130.
[18] Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev., 2012, 112(4): 2208.
[19] Dong H, Fu X, Liu J, Wang Z, Hu W. Adv. Mater., 2013, 25(43): 6158.
[20] Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, Kim D H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F, Bao Z. Nature, 2011, 480(7378): 504.
[21] Sakamoto K, Bulgarevich K, Miki K. Jpn. J. Appl. Phys., 2014, 53(2): 1B.
[22] Giri G, Park S, Vosgueritchian M, Shulaker M M, Bao Z. Adv. Mater., 2014, 26(3): 487.
[23] Zhao H, Li D, Dong G, Duan L, Liu X, Wang L. Langmuir, 2014, 30(40): 12082.
[24] Zhao H, Wang Z, Dong G, Duan L. Phys. Chem. Chem. Phys., 2015, 17(9): 6274.
[25] Xue G, Fan C, Wu J, Liu S, Liu Y, Chen H, Xin H L, Li H. Mater. Horiz., 2015, 2(3): 344.
[26] Nam S, Jang J, Anthony J E, Park J, Park C E, Kim K. ACS Appl. Mater. Interfaces, 2013, 5(6): 2146.
[27] Kim K, Jang M, Lee M, An T K, Anthony J E, Kim S H, Yang H, Park C E. J. Mater. Chem. C, 2016, 4(29): 6996.
[28] Lee S, Jang M, Yang H. ACS Appl. Mater. Interfaces, 2014, 6(22): 20444.
[29] Diemer P J, Lyle C R, Mei Y, Sutton C, Payne M M, Anthony J E, Coropceanu V, Brédas J, Jurchescu O D. Adv. Mater., 2013, 25(48): 6956.
[30] Pitsalidis C, Pappa A, Hunter S, Payne M M, Anthony J E, Anthopoulos T D, Logothetidis S. ACS Appl. Mater. Interfaces, 2015, 7(12): 6496.
[31] Zhao K, Wodo O, Ren D, Khan H U, Niazi M R, Hu H, Abdelsamie M, Li R, Li E Q, Yu L, Yan B, Payne M M, Smith J, Anthony J E, Anthopoulos T D, Thoroddsen S T, Ganapathysubramanian B, Amassian A. Adv. Funct. Mater., 2016, 26(11): 1737.
[32] Hallani R K, Thorley K J, Mei Y, Parkin S R, Jurchescu O D, Anthony J E. Adv. Funct. Mater., 2016, 26(14): 2341.
[33] Mei Y, Loth M A, Payne M, Zhang W, Smith J, Day C S, Parkin S R, Heeney M, Mcculloch I, Anthopoulos T D, Anthony J E, Jurchescu O D. Adv. Mater., 2013, 25(31): 4352.
[34] Leenen M A M, Cucinotta F, Viani L, Mavrinskiy A, Pisula W, Gierschner J, Cornil J, Prodi-Schwab A, Thiem H, Müllen K, De Cola L. J. Phys. Chem. B, 2010, 114(45): 14614.
[35] Wang B, Ding J, Zhu T, Huang W, Cui Z, Chen J, Huang L, Chi L. Nanoscale, 2016, 8(7): 3954.
[36] Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res., 2014, 47(5): 1493.
[37] Ma Z, Geng H, Wang D, Shuai Z. J. Mater. Chem. C, 2016, 4(20): 4546.
[38] Mei J, Diao Y, Appleton A L, Fang L, Bao Z. J. Am. Chem. Soc., 2013, 135(18): 6724.
[39] Takimiya K, Yamamoto T, Ebata H, Izawa T. Thin Solid Films, 2014, 554: 13.
[40] Ruzié C, Karpinska J, Laurent A, Sanguinet L, Hunter S, Anthopoulos T D, Lemaur V, Cornil J, Kennedy A R, Fenwick O, Samorì P, Schweicher G, Chattopadhyay B, Geerts Y H. J. Mater. Chem. C, 2016, 4(22): 4863.
[41] Uemura T, Hirose Y, Uno M, Takimiya K, Takeya J. Appl. Phys. Express, 2009, 2(11): 111501.
[42] Nakayama K, Hirose Y, Soeda J, Yoshizumi M, Uemura T, Uno M, Li W, Kang M J, Yamagishi M, Okada Y, Miyazaki E, Nakazawa Y, Nakao A, Takimiya K, Takeya J. Adv. Mater., 2011, 23(14): 1626.
[43] Hofmockel R, Zschieschang U, Kraft U, Rödel R, Hansen N H, Stolte M, Würthner F, Takimiya K, Kern K, Pflaum J, Klauk H. Org. Electron., 2013, 14(12): 3213.
[44] Wang Y, Chen L, Wang Q, Sun H, Wang X, Hu Z, Li Y, Shi Y. Org. Electron., 2014, 15(10): 2234.
[45] Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475(7356): 364.
[46] Iino H, Usui T, Hanna J. Nat. Commun., 2015, 6: 6828.
[47] Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, Miwa K, Sato H, Yamano A, Matsushita T, Uemura T, Takeya J. Adv. Mater., 2013, 25(44): 6392.
[48] Mitsui C, Okamoto T, Yamagishi M, Tsurumi J, Yoshimoto K, Nakahara K, Soeda J, Hirose Y, Sato H, Yamano A, Uemura T, Takeya J. Adv. Mater., 2014, 26(26): 4546.
[49] Zhao Y, Guo Y, Liu Y. Adv. Mater., 2013, 25(38): 5372.
[50] Zhou K, Dong H, Zhang H, Hu W. Phys. Chem. Chem. Phys., 2014, 16(41): 22448.
[51] Kim J, Khim D, Kang R, Lee S, Baeg K, Kang M, Noh Y, Kim D. ACS Appl. Mater. Interfaces, 2014, 6(11): 8108.
[52] Kim K, Jeong H J, Kim F S. Polym. Bull., 2016, 73(9): 2493.
[53] Wang C, Lee W, Kong D, Pfattner R, Schweicher G, Nakajima R, Lu C, Mei J, Lee T H, Wu H, Lopez J, Diao Y, Gu X, Himmelberger S, Niu W, Matthews J R, He M, Salleo A, Nishi Y, Bao Z. Sci. Rep., 2015, 5: 17849.
[54] Horii Y, Sakaguchi K, Chikamatsu M, Azumi R, Yase K, Kitagawa M, Konishi H. Appl. Phys. Express, 2010, 3(10): 101601.
[55] Long D X, Karakawa M, Noh Y. Phys. Chem. Chem. Phys., 2016, 18(34): 23904.
[56] Yu H, Cho H, Cho C, Kim K, Kim D Y, Kim B J, Oh J H. ACS Appl. Mater. Interfaces, 2013, 5(11): 4865.
[57] Wang Y, Tsai M, Wang P, Lin C, Cheng H, Tang F, Lien-Chung Hsu S, Hsu C, Chou W. RSC Adv., 2016, 6(81): 77735.
[58] Mamada M, Pérez-Bolívar C, Kumaki D, Esipenko N A, Tokito S, Anzenbacher P. Chem.-Eur. J., 2014, 20(37): 11835.
[59] Baeg K, Khim D, Kim J, Kang M, You I, Kim D, Noh Y. Org. Electron., 2011, 12(4): 634.
[60] Ferlauto L, Liscio F, Orgiu E, Masciocchi N, Guagliardi A, Biscarini F, Samorì P, Milita S. Adv. Funct. Mater., 2014, 24(35): 5503.
[61] Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J. Adv. Mater., 2011, 23(32): 3681.
[62] Stolte M, Gsanger M, Hofmockel R, Suraru S L, Wurthner F. Phys. Chem. Chem. Phys., 2012, 14(41): 14181.
[63] Zhang F, Hu Y, Schuettfort T, Di C, Gao X, Mcneill C R, Thomsen L, Mannsfeld S C B, Yuan W, Sirringhaus H, Zhu D. J. Am. Chem. Soc., 2013, 135(6): 2338.
[64] Zhao G, Gu P, Dong H, Jiang W, Wang Z, Hu W. Adv. Electron. Mater., 2016, 2(5): 1500430.
[65] Mamada M, Shima H, Yoneda Y, Shimano T, Yamada N, Kakita K, Machida T, Tanaka Y, Aotsuka S, Kumaki D, Tokito S. Chem. Mater., 2015, 27(1): 141.
[66] Wu Q, Li R, Hong W, Li H, Gao X, Zhu D. Chem. Mater., 2011, 23(13): 3138.
[67] Xu X, Yao Y, Shan B, Gu X, Liu D, Liu J, Xu J, Zhao N, Hu W, Miao Q. Adv. Mater., 2016, 28(26): 5276.
[68] Liu K, Song C, Zhou Y, Zhou X, Pan X, Cao L, Zhang C, Liu Y, Gong X, Zhang H. J. Mater. Chem. C, 2015, 3(16): 4188.
[69] Zeng W, Zhou X, Pan X, Song C, Zhang H. AIP Adv., 2013, 3(1): 12101.
[70] Li M, An C, Pisula W, Müllen K. Small, 2014, 10(10): 1926.
[71] Hu J, Nakano M, Osaka I, Takimiya K. J. Mater. Chem. C, 2015, 3(17): 4244.
[72] Hunter B S, Ward J W, Payne M M, Anthony J E, Jurchescu O D, Anthopoulos T D. Appl. Phys. Lett., 2015, 106(22): 223304.
[73] Park K S, Baek J, Park Y, Lee L, Lee Y K, Kang Y, Sung M M. Adv. Mater., 2016, 28(15): 2874.
[74] Raghuwanshi V, Bharti D, Varun I, Mahato A K, Tiwari S P. Org. Electron., 2016, 34: 284.
[75] Rivnay J, Jimison L H, Northrup J E, Toney M F, Noriega R, Lu S, Marks T J, Facchetti A, Salleo A. Nat. Mater., 2009, 8(12): 952.
[76] Li H, Fan C, Vosgueritchian M, Tee B C K, Chen H. J. Mater. Chem. C, 2014, 2(18): 3617.
[77] Kim J, Cho S, Kang J, Kim Y, Park S K. ACS Appl. Mater. Interfaces, 2014, 6(10): 7133.
[78] Wu K, Wu T, Chang S, Hsu C, Wang C. Adv. Mater., 2015, 27(29): 4371.
[79] Liu S, Wu J, Fan C, Xue G, Chen H, Xin H L, Li H. Sci. Bull., 2015, 60(12): 1122.
[80] Kim K, Rho Y, Kim Y, Kim S H, Hahm S G, Park C E. Adv. Mater., 2016, 28(16): 3209.
[81] Wu K, Li H, Li L, Zhang S, Chen X, Xu Z, Zhang X, Hu W, Chi L, Gao X, Meng Y. Langmuir, 2016, 32(25): 6246.
[82] Ceratti D R, Louis B, Paquez X, Faustini M, Grosso D. Adv. Mater., 2015, 27(34): 4958.
[83] James D T, Frost J M, Wade J, Nelson J, Kim J. ACS Nano, 2013, 7(9): 7983.
[84] Tang C, Wu W, Smilgies D, Matyjaszewski K, Kowalewski T. J. Am. Chem. Soc., 2011, 133(30): 11802.
[85] Tszydel I, Kucinska M, Marszalek T, Rybakiewicz R, Nosal A, Jung J, Gazicki-Lipman M, Pitsalidis C, Gravalidis C, Logothetidis S, Zagorska M, Ulanski J. Adv. Funct. Mater., 2012, 22(18): 3840.
[86] 姚奕帆(Yao Y F), 江浪(Jiang L), 董焕丽(Dong H L), 胡文平(Hu W P). 科学通报(Chinese Science Bulletin), 2013, 58(18): 1683.
[87] Niazi M R, Li R, Qiang Li E, Kirmani A R, Abdelsamie M, Wang Q, Pan W, Payne M M, Anthony J E, Smilgies D, Thoroddsen S T, Giannelis E P, Amassian A. Nat. Commun., 2015, 6: 8598.
[88] Pitsalidis C, Kalfagiannis N, Hastas N A, Karagiannidis P G, Kapnopoulos C, Ioakeimidis A, Logothetidis S. RSC Adv., 2014, 4(40): 20804.
[89] Khim D, Han H, Baeg K, Kim J, Kwak S, Kim D, Noh Y. Adv. Mater., 2013, 25(31): 4302.
[90] Chang J, Chi C, Zhang J, Wu J. Adv. Mater., 2013, 25(44): 6442.
[91] Park S, Giri G, Shaw L, Pitner G, Ha J, Koo J H, Gu X, Park J, Lee T H, Nam J H, Hong Y, Bao Z. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(18): 5561.
[92] Xu J, Wang Y, Shan H, Lin Y, Chen Q, Roy V A L, Xu Z. ACS Appl. Mater. Interfaces, 2016, 8(29): 18991.
[93] Soeda J, Uemura T, Okamoto T, Mitsui C, Yamagishi M, Takeya J. Appl. Phys. Express, 2013, 6(7): 76503.
[94] Del Pozo F G, Fabiano S, Pfattner R, Georgakopoulos S, Galindo S, Liu X, Braun S, Fahlman M, Veciana J, Rovira C, Crispin X, Berggren M, Mas-Torrent M. Adv. Funct. Mater., 2016, 26(14): 2379.
[95] Noda Y, Minemawari H, Matsui H, Yamada T, Arai S, Kajiya T, Doi M, Hasegawa T. Adv. Funct. Mater., 2015, 25(26): 4022.
[96] Lim J, Lee W, Kwak D, Cho K. Langmuir, 2009, 25(9): 5404.
[97] Kjellander B K C, Smaal W T T, Anthony J E, Gelinck G H. Adv. Mater., 2010, 22(41): 4612.
[98] Komino T, Kuwabara H, Ikeda M, Yahiro M, Takimiya K, Adachi C. Langmuir, 2013, 29(30): 9592.
[99] Castro H F, Sowade E, Rocha J G, Alpuim P, Lanceros M S, Baumann R R. J. Electron. Mater., 2014, 43(7): 2631.
[100] Shao M, Das S, Xiao K, Chen J, Keum J K, Ivanov I N, Gu G, Durant W, Li D, Geohegan D B. J. Mater. Chem. C, 2013, 1(28): 4384.
[101] Onojima N, Takahashi S, Saito H. Org. Electron., 2015, 24: 165.
[102] Checcoli P, Conte G, Salvatori S, Paolesse R, Bolognesi A, Berliocchi M, Brunetti F, D’Amico A, Di Carlo A, Lugli P. Synth. Met., 2003, 138: 261.
[103] Azarova N A, Owen J W, Mclellan C A, Grimminger M A, Chapman E K, Anthony J E, Jurchescu O D. Org. Electron., 2010, 11(12): 1960.
[104] Khim D, Baeg K, Yu B, Kang S, Kang M, Chen Z, Facchetti A, Kim D, Noh Y. J. Mater. Chem. C, 2013, 1(7): 1500.
[105] Park H, Yang H, Choi S, Jang S. ACS Appl. Mater. Interfaces, 2012, 4(1): 214.
[106] Pitsalidis C, Pappa A M, Hunter S, Laskarakis A, Kaimakamis T, Payne M M, Anthony J E, Anthopoulos T D,Logothetidis S. J. Mater. Chem. C, 2016, 4(16): 3499.
[107] 张凤娇(Zhang F J), 狄重安(Di Z A). 化学通报(Chemistry Bulletin), 2013, 76(1): 15.
[108] Weidkamp K P, Afzali A, Tromp R M, Hamers R J. J. Am. Chem. Soc., 2004, 126(40): 12740.
[109] Khim D, Baeg K, Kim J, Kang M, Lee S, Chen Z, Fachetti A, Kim D, Noh Y. ACS Appl. Mater. Interfaces, 2013, 5(21): 10745.
[1] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[2] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[3] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[4] 杨柳, 雷霆, 裴坚*, 刘晨江* . 有机微纳米材料的设计策略、加工及应用[J]. 化学进展, 2012, 24(12): 2299-2311.
[5] 蔡晓舟, 江浪, 董焕丽, 李晶泽*, 胡文平* . 有机电路及其基本元器件[J]. 化学进展, 2012, 24(12): 2431-2442.