English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 426-434 DOI: 10.7536/PC161234 前一篇   后一篇

• 综述 •

肼硼烷的合成及产氢

张世亮, 姚淇露, 卢章辉*   

  1. 江西师范大学化学化工学院 江西省无机膜材料工程技术研究中心 南昌 330022
  • 收稿日期:2016-12-27 修回日期:2017-02-10 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 卢章辉,e-mail:luzh@jxnu.edu.cn E-mail:luzh@jxnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21463012,21103074)和江西省自然科学基金项目(No.2016BAB203087)资助

Synthesis and Dehydrogenation of Hydrazine Borane

Shiliang Zhang, Qilu Yao, Zhanghui Lu*   

  1. Jiangxi Inorganic Membrane Materials Engineering Research Centre, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
  • Received:2016-12-27 Revised:2017-02-10 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21463012, 21103074)and the Natural Science Foundation of Jiangxi Province of China (No. 2016BAB203087).
肼硼烷(N2H4BH3,HB)的含氢量高达15.4 wt%,易于制备,物理化学性质稳定,是一种极具潜力的化学储氢材料。肼硼烷可以通过热解、醇解和水解产氢。特别是,通过水解其硼烷基和选择性裂解肼基实现完全产氢后,其对应的N2H4BH3-3H2O系统的有效理论质量储氢容量达10 wt%,远高于已知的氢源系统NaBH4-4H2O(7.3 wt%),NH3BH3-4H2O(5.9 wt%)和N2H4·H2O(8.0 wt%)。合适的催化剂是促使肼硼烷完全产氢的关键。本文简要地介绍了肼硼烷的合成与表征,重点综述了温和条件下肼硼烷的硼烷基水解和肼基分解产氢所使用的催化体系及其催化性能,对肼硼烷完全产氢的机理进行分析,并对肼硼烷催化产氢的应用前景进行展望。
Hydrazine borane (N2H4BH3, HB) is considered as a highly promising hydrogen storage material due to its high hydrogen content (15.4 wt%), easy preparation, and good physical and chemical properties. Hydrogen can be produced from hydrazine borane via pyrolysis, methanolysis and hydrolysis reaction. Especially, a promising approach for complete hydrogen production from N2H4BH3 is by hydrolysis of the BH3 group and selective decomposition of the N2H4 moiety of N2H4BH3, corresponding to a theoretical gravimetric hydrogen storage capacity (GHSC) of 10 wt% for the system N2H4BH3-3H2O. The GHSC of N2H4BH3 is much higher than those of benchmark hydrogen storage systems NaBH4-4H2O (7.3 wt%), NH3BH3-4H2O (5.9 wt%), and N2H4·H2O (8.0 wt%). The suitable catalyst is essential for complete hydrogen generation from N2H4BH3. In this paper, the synthesis and characterizations of hydrazine borane are briefly introduced. The developments of catalytic systems for hydrogen production from hydrolysis of the BH3 group and dehydrogenation of the N2H4 moiety of hydrazine borane at mild conditions are significantly reviewed. Moreover, the mechanism of hydrogen production from hydrazine borane is concisely analyzed and the application prospects of hydrazine borane are also remarked in this review.

Contents
1 Introduction
2 Synthesis and characterization of hydrazine borane
2.1 Synthesis
2.2 Molecular and structural analyses
3 Dehydrogenation of hydrazine borane
3.1 Hydrolysis of the BH3 group of hydrazine borane
3.2 Hydrolysis of the BH3 group and dehydrogenation of the N2H4 moiety of hydrazine borane
3.3 Reaction mechanism of complete dehydrogenation of hydrazine borane
4 Conclusion

中图分类号: 

()
[1] Schlapbach L, Züttel A. Nature, 2001, 414: 353.
[2] 张磊(Zhang L), 涂倩(Tu Q), 陈学年(Chen X N), 刘蒲(Liu P). 化学进展(Progress in Chemistry), 2014, 26(5): 749.
[3] Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Energy Environ. Sci., 2008, 1: 79.
[4] Ball M, Wietschel M. Int. J. Hydrogen Energy, 2009, 34: 615.
[5] Yang J, Sudik A, Wolverton C, Siegel D. Chem. Soc. Rev., 2010, 39: 656.
[6] Weidenthaler C, Felderhoff M. Energy Environ. Sci., 2011, 4: 2495.
[7] Dalebrook A F, Gan W J, Grasemann M, Moret S, Gabor L. Chem. Commun., 2013, 49: 8735.
[8] 徐东彦(Xu D Y), 张华民(Zhang H M), 叶威(Ye W). 化学进展(Progress in Chemistry), 2007, 19(10): 1599.
[9] Zahmakiran M, Özkar S. J. Mol. Catal. A: Chem., 2006, 258: 95.
[10] Marrero-Alfonso E Y, Gray J R, Davis T A, Matthews M A. Int. J. Hydrogen Energy, 2007, 32: 4723.
[11] 梁艳(Liang Y), 王平(Wang P), 戴洪斌(Dai H B). 化学进展(Progress in Chemistry), 2009, 21(10): 2220.
[12] Wang H X, Zhao Y R, Cheng F Y, Tao Z L, Chen J. Catal. Sci. Technol., 2016, 6: 3443.
[13] Yao Q L, Lu Z H, Jia Y S, Chen X S, Liu X. Int. J. Hydrogen Energy, 2015, 40: 2207.
[14] Hu Y J, Lu Z H, Wang Y Q, Chen X S, Xiong L H. Appl. Surf. Sci., 2015, 341: 185.
[15] Shen J, Yang L, Hu K, Luo W, Cheng G. Int. J. Hydrogen Energy, 2015, 40: 1062.
[16] Yao Q L, Shi W M, Feng G, Lu Z H, Zhang X L, Tao D J, Kong D J, Chen X S. J. Power Sources, 2014, 257: 293.
[17] Yang Y W, Feng G, Lu Z H, Hu N, Zhang F, Chen X S. Acta Phys. Chim. Sin., 2014, 30: 1180.
[18] Lu Z H, Li J P, Feng G, Yao Q L, Zhang F, Zhou R Y, Tao D J, Chen X S, Yu Z Q. Int. J. Hydrogen Energy, 2014, 39: 13389.
[19] Yao Q L, Shi Y, Zhang X L, Chen X S, Lu Z H. Chem. Asian J., 2016, 22: 3251.
[20] Chen W Y, Li D, Wang Z J, Qian G, Sui Z J, Duan X Z, Zhou X G, Yeboah I, Chen D. AIChE J., 2017, 63: 60.
[21] Yao Q L, Lu Z H, Wang Y Q, Chen X S, Feng G. J. Phys. Chem. C, 2015, 119: 14167.
[22] Yang Y W, Lu Z H, Hu Y J, Zhang Z J, Shi W M, Chen X S, Wang T T. RSC Adv., 2014, 4: 13749.
[23] Sanyal U, Demirci U B, Jagirdar B R, Miele P. ChemSusChem., 2011, 4: 1731.
[24] Li Z Y, Zhu G S, Lu G Q, Qiu S L, Yao X D. J. Am. Chem. Soc., 2010, 132: 1490.
[25] Yang Y W, Lu Z H, Chen X S. Mater. Technol., 2015, 30: 89.
[26] Xu Q, Chandra M. J. Power Sources, 2006. 163: 364.
[27] Yao Q L, Huang M, Lu Z H, Yang Y W, Zhang Y X, Chen X S, Yang Z. Dalton Trans., 2015, 44: 1070.
[28] Yao Q L, Lu Z H, Hu Y J, Chen X S. RSC Adv., 2016, 6: 89450.
[29] Akbayrak S, Tonbul Y, Özkar S. Appl. Catal. B: Environ., 2016, 198: 162.
[30] Yao Q L, Lu Z H, Huang W, Chen X S, Zhu J. J. Mater. Chem. A, 2016, 4: 8579.
[31] Lu Z H, Li J P, Zhu A L, Yao Q L, Huang W, Zhou R Y, Zhou R F, Chen X S. Int. J. Hydrogen Energy, 2013, 38: 5330.
[32] Singh S K, Singh A K, Aranishi K, Xu Q. J. Am. Chem. Soc., 2011, 133:19638.
[33] Song-II O, Yan J M, Wang H L, Wang Z L, Jiang Q. J. Power Sources, 2014, 262: 386.
[34] Chen J M, Yao Q L, Zhu J, Chen X S, Lu Z H. Int. J. Hydrogen Energy, 2016, 41: 3946.
[35] Wang J, Li W, Wen Y R, Gu L, Zhang Y. Adv. Energy Mater., 2015, 5: 1401879.
[36] Wang H L, Yan J M, Li S J, Zhang X W, Jiang Q. J. Mater. Chem. A, 2015, 3: 121.
[37] Moury R, Demirci U B. Energies, 2015, 8: 3118.
[38] Zhigach A F, Zakharov V V, Manelis G B, Nechiporenko G N, Nikitin V S, Esel’son B M. Zh. Neorg. Khim., 1973, 18: 1762.
[39] Hügle T, Kühnel M F, Lentz D. J. Am. Chem. Soc., 2009, 131: 7444.
[40] Zhong D C, Aranishi K, Singh A K. Demirci U B, Xu Q. Chem. Commun., 2012, 48: 11945.
[41] Goubeau V J, Ricker E Z. Anorg. Allg. Chem., 1961, 310:123.
[42] Gunderloy F C. US 3375087, 1968.
[43] Gunderloy F C. Inorg. Chem., 1963, 2: 221.
[44] Gunderloy F C. US 3159451, 1964.
[45] Uchida H S, Hefferan G T. US 3119652, 1964.
[46] Moury R, Moussa G, Demirci U B, Hannauer J, Bernard S, Petit E, Lee A, Miele P. Phys. Chem. Chem. Phys., 2012, 14: 1768.
[47] Mebs S, Grabowsky S, Förster D, Kickbusch R, Hartl M, Daemen L L, Morgenroth W, Luger P, Paulus B, Lentz D J. Phys.Chem. A, 2010, 114: 10185.
[48] Zhang Z J, Lu Z H, Chen X S. J. Mater. Chem. A, 2015, 3: 23520.
[49] Karahan S, Zahmakran M, Özkar S. Int. J. Hydrogen Energy, 2011, 36: 4958.
[50] Celik D, Karahan S, Zahmakiran M, Özkar S. Int. J. Hydrogen Energy, 2012, 37: 5143.
[51] Tunç N, Abay B, Rakap M. J. Power Sources, 2015, 299: 403.
[52] Yao Q L, Lu Z H, Yang K K, Chen X S, Zhu M H. Sci. Rep., 2015, 5: 15186.
[53] Sencanli S, Karahan S, Özkar S. Int. J. Hydrogen Energy, 2013, 38: 14693.
[54] Karahan S, Özkar S. Int. J. Hydrogen Energy, 2015, 40: 2255.
[55] Yao Q L, Lu Z H, Zhang Z J, Chen X S, Lan Y Q. Sci. Rep., 2014, 4: 7597.
[56] Yang K K, Yao Q L, Huang W, Chen X W, Lu Z H. Int. J. Hydrogen Energy, 2016, DOI: 10.1016/j.ijhydene.2016.12.029.
[57] Karahan S, Zahmakiran M, Özkar S. Dalton Trans., 2012, 41: 4912.
[58] Özhava D, K?l?caslan N Z, Özkar S. Appl. Catal. B: Environ., 2015, 162: 573.
[59] Singh S K, Xu Q. J. Am. Chem. Soc., 2009, 131:18032.
[60] He L, Huang Y, Wang A, Wang A, Chen X, Delgado J J, Zhang T. Angew. Chem., Int. Ed., 2012, 51: 6191.
[61] Yao Q L, Chen X S, Lu Z H. Energy Environ. Focus, 2014, 3: 236.
[62] Singh S K, Lu Z H, Xu Q. European J. Inorg. Chem., 2011, 14: 2232.
[63] Hannauer J, Akdim Q, Demirci U B, Geantet C, Herrmann J M, Miele P, Xu Q. Energ. Environ. Sci., 2011, 4: 3355.
[64] Hannauer J, Demirci U B, Geantet C, Herrmannb J M, Miele P. Int. J. Hydrogen Energy, 2012, 37: 10758.
[65] Aziza W B, Petit J F, Demirci U B, Xu Q, Miele P. Int. J. Hydrogen Energy, 2014, 39: 16919.
[66] Hannauer J, Akdim O, Demirci U B, Geantet C, Herrmann J M, Miele P, Xu Q. Int. J. Hydrogen Energy, 2012, 37: 9722.
[67] Li C M, Dou Y B, Liu J, Chen Y D, He S, Wei M, Evans D G, Duan X. Chem. Commun., 2013, 49: 9992.
[68] Clemençon D, Petit J F, Demirci U B, Xu Q, Miele P. J. Power Sources, 2014, 260: 77.
[69] Zhu Q L, Zhong D C, Demirci U B, Xu Q. ACS Catal., 2014, 4: 4261.
[70] Zhang Z J, Wang Y Q, Chen X S, Lu Z H. J. Power Sources, 2015, 291: 14.
[71] Zhang Z J, Lu Z H, Chen X S. ACS Sustain. Chem. Eng., 2015, 3: 1255.
[72] 卢章辉(Lu Z H), 张主军(Zhang Z J), 陈祥树(Chen X S). ZL 201410214740.9, 2017.
[73] 张主军(Zhang Z J). 江西师范大学硕士论文(Master Dissertation of Jiangxi Normal University), 2016.
[74] Chen J M, Lu Z H, Hang W, Kang Z B, Chen X S. J. Alloys Compd., 2017, 695: 3036.
[75] 贺艳斌(He Y B). 山西师范大学博士论文(Doctoral Dissertation of Shanxi Normal University), 2015.
[76] Block J, Schulz E G. J. Catal., 1973, 30: 327.
[77] Falconer J L, Wise H. J. Catal., 1976, 43: 220.
[78] 贺雷(He L), 黄延强(Huan Y Q), 王爱琴(Wang A Q), 王晓东(Wang X D), 张涛(Zhang T). 化工进展(Chemical Industry and Engineer Progress), 2014, 33(11): 2956.
[79] Lu Z H, Yao Q L, Zhang Z J, Yang Y W, Chen X S. J. Nanomater., 2014, 729029.
[80] Lu Z H, Xu Q. Funct. Mater. Lett., 2012, 5 (1): 1230001.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
阅读次数
全文


摘要

肼硼烷的合成及产氢