English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 388-399 DOI: 10.7536/PC170133 前一篇   后一篇

• 综述 •

水环境中ZVI/氧化剂体系及其电子迁移作用机制

杨世迎1,2,3*, 任腾飞1,3, 张艺萱3, 郑迪3, 辛佳1,3   

  1. 1. 海洋环境与生态教育部重点实验室 青岛 266100;
    2. 山东省海洋环境地质工程重点实验室 青岛 266100;
    3. 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2017-01-23 修回日期:2017-02-19 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 杨世迎,e-mail:ysy@ouc.edu.cn E-mail:ysy@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21677135)资助

ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms

Shiying Yang1,2,3*, Tengfei Ren1,3, Yixuan Zhang3, Di Zheng3, Jia Xin1,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2017-01-23 Revised:2017-02-19 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21677135).
利用零价铁(Zero-Valent Iron,ZVI)去除水环境中的污染物成为近年来的研究热点。当O2、H2O2等氧化剂存在时,ZVI、氧化剂与污染物之间的电子迁移机制非常复杂,ZVI和氧化剂之间的相互影响机制尚无定论。传统观点认为,O2会促进ZVI钝化膜的形成并阻断电子传递从而降低ZVI的还原性能。然而O2可在ZVI作用下通过双电子传输转化为H2O2,构成ZVI/O2类Fenton体系;在此基础上,利用额外加入H2O2、HSO5-、S2O82-等氧化剂,发展出了基于·OH或SO4·-的ZVI/氧化剂高级氧化体系(ZVI-AOPs),从而氧化降解有机污染物。有学者认为H2O2、KMnO4、S2O82-等强氧化剂的加入反而可以加快ZVI腐蚀和失电子的速率,从而提高ZVI去除重金属等污染物的还原性能,该研究结论对钝化膜机制提出了挑战。ZVI与氧化剂的联合作用还可以实现同时还原去除重金属和氧化降解有机物,也可以对卤代有机物等抗氧化污染物实现先还原后氧化去除。本文综述了基于ZVI/氧化剂的高级氧化或还原体系及其电子迁移机制,同时对ZVI与氧化剂的联合作用体系作一总结,并就值得深入研究的问题进行了展望。
In recent years, the use of zero-valent iron (ZVI) for treatment of toxic contaminants in water system has been widely investigated. In the presence of oxidant, such as oxygen (O2) or hydrogen peroxide (H2O2), the electron transfer processes among ZVI, oxidants and contaminants are extremely complex, and the interaction mechanisms between ZVI and oxidants are still inconclusive. Generally speaking, O2 can promote the formation of iron oxide layer via corrosion of ZVI by water and oxygen, which may block the outward electron transfer and then decrease the reductive ability of ZVI. However, O2 could be activated via two-electron reduction pathway to produce H2O2, thereby forming ZVI/O2 Fenton-like system. Based on this, the extra addition of H2O2, peroxymonosulfate (HSO5-) or persulfate (S2O82-) can react with ZVI and the generated Fe2+ and then produce strong oxidizing hydroxyl radicals (·OH) and sulfate radicals (SO4·-), which can efficiently degrade organic contaminants through advanced oxidation processes (ZVI-AOPs). Otherwise, some researchers recently propose another critical role of common oxidants in accelerating ZVI corrosion and then hence in facilitating the electron transfer rate and promoting the reductive performance of ZVI. The combination of ZVI and oxidants can not only show significant synergistic degradation between heavy metals and organic contaminants, but also achieve the degradation and mineralization of refractory pollutants through reduction through ZVI firstly and then oxidation through AOPs. This review summarizes the ZVI-AOPs system and ZVI-reduction system based on the interaction between ZVI and oxidants and their electron transfer processes, as well as makes a summary of the associative effect of ZVI and oxidants. At last, the prospects of the research areas meriting further investigation are pointed out.

Contents
1 Introduction
2 Advanced oxidation processes
2.1 ZVI/oxidant advanced oxidation system
2.2 Physically enhanced ZVI/oxidant system
2.3 Chemically enhanced ZVI/oxidant system
3 Reduction processes
3.1 ZVI/O2 reduction system
3.2 ZVI/H2O2 reduction system
3.3 ZVI/PS reduction system
3.4 ZVI/other oxidants reduction system
4 Associative mechanisms of ZVI and oxidants
4.1 Simultaneous removal of combined pollutants
4.2 Removal of refractory pollutants
5 Conclusion

中图分类号: 

()
[1] Fu F, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194.
[2] Sun Y, Li J, Huang T, Guan X. Water Res., 2016, 100: 277.
[3] Guan X, Sun Y, Qin H, Li J, Lo I M C, He D, Dong H. Water Res., 2015, 75: 224.
[4] Xin J, Tang F, Zheng X, Shao H, Kolditz O, Lu X. Water Res., 2016, 100: 80.
[5] Noubactep C. Environ. Technol., 2008, 29(8): 909.
[6] Flury B, Frommer J, Eggenberger U, Mãder U, Nachtegaal M, Kretzschmar R. Environ. Sci. Technol., 2009, 43(17): 6786.
[7] Brillas E, Sirés I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.
[8] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42(4): 1262.
[9] Zhou T, Li Y, Ji J, Wong F, Lu X. Sep. Purif. Technol., 2008, 62(3): 551.
[10] Liang C, Lai M. Environ. Eng. Sci., 2008, 25(7): 1071.
[11] Guo X, Yang Z, Liu H, Lv X, Tu Q, Ren Q, Xia X, Jing C. Sep. Purif. Technol., 2015, 146: 227.
[12] Guo X, Yang Z, Dong H, Guan X, Ren Q, Lv X, Jin X. Water Res., 2016, 88: 671.
[13] Diao Z, Xu X, Jiang D, Kong L, Sun Y, Hu Y, Hao Q, Chen H. Chem. Eng. J., 2016, 302: 213.
[14] Luo S, Yang S, Sun C, Wang X. Water Res., 2011, 45(4): 1519.
[15] 杨世迎(Yang S Y), 杨鑫(Yang X), 梁婷(Liang T), 马楠(Ma N), 王平(Wang P). 环境化学(Environmental Chemistry), 2012, 31(5): 682.
[16] Harada T, Yatagai T, Kawase Y. Chem. Eng. J., 2016, 303: 611.
[17] 赵进英(Zhao J Y). 大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2010.
[18] Nam S Y, Jeon B C, Kim Y K. Environ. Eng. Res., 2014, 19(1): 9.
[19] Kallel M, Belaid C, Boussahel R, Ksibi M, Montiel A, Elleuch B. J. Hazard. Mater., 2009, 163(2/3): 550.
[20] Chen S, Hsu H, Tsui H, Chang Y. Desalin. Water Treat., 2013, 51(7/9): 1678.
[21] Zhang W, Gao H, He J, Yang P, Wang D, Ma T, Xia H, Xu X. Sep. Purif. Technol., 2017, 172: 158.
[22] Matzek L W, Carter K E. Chem. Eng. J., 2017, 307: 650.
[23] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z), 王萍(Wang P), 刘玉红(Liu Y H), 王茂东(Wang M D). 化学进展(Progress in Chemistry), 2008, 20(9): 1433.
[24] 韩强(Hang Q), 杨世迎(Yang S Y), 杨鑫(Yang X), 邵雪停(Shao X T), 牛瑞(Niu R), 王雷雷(Wang L L). 化学进展(Progress in Chemistry), 2012, 24(1): 144.
[25] Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, Niu R. J. Hazard. Mater., 2010, 179(1/3): 552.
[26] Yang S, Li L, Xiao T, Zheng D, Zhang Y. Appl. Surf. Sci., 2016, 383: 142.
[27] Matzek L W, Carter K E. Chemosphere, 2016, 151: 178.
[28] Oh S, Kim H, Park J, Park H, Yoon C. J. Hazard. Mater., 2009, 168(1): 346.
[29] Oh S, Kang S, Chiu P C. Sci. Total Environ., 2010, 408(16): 3464.
[30] 杨世迎(Yang S Y), 马楠(Ma N), 王静(Wang J), 石超(Shi C), 冯琳玉(Feng L Y). 环境化学(Environmental Chemistry), 2013, 33(11): 2127.
[31] Ghanbari F, Moradi M, Manshouri M. J. Environ. Chem. Eng., 2014, 2(3): 1846.
[32] Zhou T, Zou X, Mao J, Wu X. Appl. Catal. B-Environ., 2016, 185: 31.
[33] Lee Y, Lo S, Chiueh P, Liou Y, Chen M. Water Res., 2010, 44(3): 886.
[34] Devi L G, Srinivas M, Arunakumari M L. J. Water Process Eng., 2016, 13: 117.
[35] Gao Y, Zhang Z, Li S, Liu J, Yao L, Li Y, Zhang H. Appl. Catal. B-Environ., 2016, 185: 22.
[36] Li Y, Yuan X, Wu Z, Wang H, Xiao Z, Wu Y, Chen X, Zeng G. Chem. Eng. J., 2016, 303: 636.
[37] Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X. Water Res., 2014, 62: 53.
[38] Kang J W, Hung H M, Lin A, Hoffmann M R. Environ. Sci. Technol., 1999, 33(18): 3199.
[39] Shin J, Lee Y C, Ahn Y, Yang J W. Desalin. Water Treat., 2013, 50(1/3): 737.
[40] Segura Y, Martínez F, Melero J A, Molina R, Chand R, Bremner D H. Appl. Catal. B-Environ., 2012, 113: 100.
[41] Weng C, Lin Y, Chang C, Liu N. Ultraso. Sonochem., 2013, 20(3): 970.
[42] Gholami M, Rahmani K, Rahmani A, Rahmani H, Esrafili A. Desalin. Water Treat., 2015, 57(30): 1.
[43] Zou X, Zhou T, Mao J, Wu X. Chem. Eng. J., 2014, 257: 36.
[44] Yang S Y, Wang P, Yang X, Wei G, Zhang W Y, Shan L. J. Environ. Sci., 2009, 21: 1175.
[45] Son H, Im J, Zoh K. Water Res., 2009, 43(5): 1457.
[46] Li J, Qin H, Zhang W, Shi Z, Zhao D, Guan X. Sep. Purif. Technol., 2017, 176: 40.
[47] Xiong X, Sun Y, Sun B, Song W, Sun J, Gao N, Qiao J, Guan X.RSC Adv., 2015, 5(18): 13357.
[48] Xiang W, Zhang B, Zhou T, Wu X, Mao J. Sci. Rep., 2016, 6: 24094.
[49] Hou X, Huang X, Ai Z, Zhao J, Zhang L. J. Hazard. Mater., 2016, 310: 170.
[50] Qin Y, Song F, Ai Z, Zhang P, Zhang L. Environ. Sci. Technol., 2015, 49(13): 7948.
[51] Al-Shamsi M A, Thomson N R. Water, Air, Soil Pollut., 2013, 224(11): 1780.
[52] Ayoub G, Ghauch A. Chem. Eng. J., 2014, 256: 280.
[53] Gong J, Lee C, Kim E, Chang Y, Chang Y. J. Hazard. Mater., 2016, 310: 135.
[54] Wei X, Gao N, Li C, Deng Y, Zhou S, Li L. Chem. Eng. J., 2016, 285: 660.
[55] Pagano M, Volpe A, Lopez A, Mascolo G, Ciannarella R. Environ. Technol., 2011, 32(1/2): 155.
[56] Li J, Liu Q, Ji Q Q, Lai B. Appl. Catal. B-Environ., 2017, 200: 633.
[57] Da Silva-Rackov C K O, Lawal W A, Nfodzo P A, Vianna M M G R, Do Nascimento C A O, Choi H. Appl. Catal. B-Environ., 2016, 192: 253.
[58] Joo S H. Water, Air, Soil Pollut., 2014, 225(8): 2076.
[59] Yan J, Han L, Gao W, Xue S, Chen M. Bioresour. Technol., 2015, 175: 269.
[60] Shi Q, Li A, Qing Z, Li Y. J. Ind. Eng. Chem., 2015, 25: 308.
[61] Tai C, She J, Yin Y, Zhao T, Wu L. J. Nanosci. Nanotechnol., 2016, 16(6): 5850.
[62] Ahmad A, Gu X, Li L, Lv S, Xu Y, Guo X. Environ. Sci. Pollut. Res., 2015, 22(22): 17876.
[63] Danish M, Gu X, Lu S, Xu M, Zhang X, Fu X, Xue Y, Miao Z, Naqvi M, Nasir M. Res. Chem. Intermed., 2016, 42(9): 6959.
[64] Cai C, Zhang H, Zhong X, Hou L. J. Hazard. Mater., 2015, 283: 70.
[65] Ai Z, Gao Z, Zhang L, He W, Yin J J. Environ. Sci.Technol., 2013, 47(10): 5344.
[66] Mu Y, Jia F, Ai Z, Zhang L. Environ. Sci.: Nano, 2017, 4: 27.
[67] Zhu L, Ai Z, Ho W, Zhang L. Sep. Purif. Technol., 2013, 108: 159.
[68] Li H, Wan J, Ma Y, Wang Y. Chem. Eng. J., 2016, 301: 315.
[69] Song S, Su Y, Adeleye A S, Zhang Y, Zhou X. Appl. Catal. B Environ., 2017, 201: 211.
[70] Qin H, Li J, Bao Q, Li L, Guan X. RSC Adv., 2016, 6(55): 50144.
[71] ZouY, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environ. Sci. Technol., 2016, 50(14): 7290.
[72] Cao S. Master Dissertation of Lappeenranta University of Technology, 2016.
[73] Yang Z, Shan C, Zhang W, Jiang Z, Guan X, Pan B. Water Res., 2016, 106: 461.
[74] Ji Q, Li J, Xiong Z, Lai B. Chemosphere, 2017, 172: 10.
[75] Diao Z, Xu X, Chen H, Jiang D, Yang Y, Kong L, Sun Y, Hu Y, Hao Q, Liu L. J. Hazard. Mater., 2016, 316: 186.
[76] Luo S, Yang S, Xue Y, Liang F, Sun C. J. Hazard. Mater., 2011, 192(3): 1795.
[77] Tan L, Lu S, Fang Z, Cheng W, Tsang E P. Appl. Catal. B-Environ., 2017, 200: 200.
[78] Lv Y, Zhang Z, Chen Y, Hu Y. Chem. Eng. J., 2016, 289: 382.
[79] Liu J, Ou C, Han W, Faheem F, Shen J, Bi H, Sun X, Li J, Wang L. RSC Adv., 2015, 5(71): 57444.
[80] 杨世迎(Yang S Y), 郑迪(Zheng D), 常书雅(Chang S Y), 石超(Shi C). 化学进展(Progress in Chemistry), 2016, 28(5): 754.
[81] Rajajayavel S R C, Ghoshal S. Water Res., 2015, 78: 144.
[82] Liu H, Wang Q, Wang C, Li X. Chem. Eng. J., 2013, 215: 90.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[12] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[13] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[14] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[15] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.