English
新闻公告
More
化学进展 2007, Vol. 19 Issue (0203): 414-419 前一篇   后一篇

• 综述与评论 •

衰减全反射-紫外/可见光谱技术应用*

朱红祥1; 柴欣生1,2**;王双飞1;宋海农1;朱俊勇3   

  1. 1.广西大学 轻工与食品工程学院,南宁 530004;

    2.美国左治亚理工大学 造纸科学和技术研究所 Atlanta GA30332;

    3.美国农业部林业林产品实验室,Madison, WI53726

  • 收稿日期:2006-04-13 修回日期:2006-09-20 出版日期:2007-03-24 发布日期:2007-03-24
  • 通讯作者: 柴欣生

Attenuated Total Reflection UV/Vis Spectroscopic Applications

Zhu Hongxiang1;Chai Xinsheng1,2**;Wang Shuangfei1;Song Hainong1;Zhu Junyong3   

  1. 1.School of Light Industrial and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China;

    2. Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, 30332, USA;

    3.USDA Forest Product Laboratory,Madison,W153726,USA

  • Received:2006-04-13 Revised:2006-09-20 Online:2007-03-24 Published:2007-03-24
本文对衰减全反射法(ATR)的光学测定原理、衰减全反射-紫外/可见光谱方法(ATR-UV)的特点以及它们在一些典型的工业过程溶液,如高浓度和含有大量固体颗粒和微乳液聚合等体系检测的应用进行了综述。ATR-UV光谱技术适宜实时地反馈工业过程溶液的组分改变和浓度变化,从而帮助我们了解该过程的进展。这些优良的特性能帮助我们开发在线的传感器,因此可用于监测许多典型的工业过程溶液。其方法简单、迅速,一般无需对试样进行预处理或稀释。ATR-UV作为光谱学测定的重要波段,其技术开发将在化工过程检测方面具有重要的意义。
This paper describes the principle of attenuated total reflection(ATR) and the features of ATR-UV spectroscopy. It also provides a comprehensive review of the ATR-UV applications in several complicated streams, such as the solutions having very concentrated compositions or significant amount of suspended solids, and the latex of emulsion polymerization. The ATR-UV spectroscopic techniques is suitable to be developed as an on-line sensor for monitoring the species of interest in many typical industrial process streams ,which provides the real-time information that is very important for the process control. It is very simple and fast, and in general it dose not require sample pretreatment. As an important wavelength range in spectroscopy, the development of ATR-UV technology will be very helpful for not only the process monitoring but also the process study in the chemical engineering related fields.

中图分类号: 

()

[ 1 ] Beebe K R , Blaser W W, Bredeweg R A , et al . Anal . Chem. ,1993 , 65 : 199R —216R
[ 2 ] Mooney E F. Chem. Eng. Chem. , 1991 , 87 : 61 —64
[ 3 ] Peramunage D , Forouzan F , Licht S. Anal . Chem. , 1993 , 66 :378 —383
[ 4 ] Teder A. Sven. Papperstidn. , 1967 , 70(3) : 197 —200
[ 5 ] Harrick N J . Internal Reflection Spectroscopy. NY: John Wiley & Sons , 1967
[ 6 ] Fahrenfort J . Spectro. Chim. Acta , 1961 , 17 : 698 —705
[ 7 ] Schlemmer H , Katzer J , Fresenius Z. Anal . Chem. , 1987 , 329 :435 —440
[ 8 ] Chai X S. PhD Dissertation of Royal Institute of Technology (KTH) . Stockholm, 1996
[ 9 ] Chai X S , Danielsson L G. Analytica Chimica Acta , 1996 , 332 :31 —38
[10] Danielsson L G, Chai X S. Process Control and Quality , 1994 , 6 :149 —157
[11] Chai X S , Danielsson L G, Yang X T , et al . Process Control and Quality , 1998 , 11(2) : 153 —159
[12] Romppainen P , Savolainen M, Keski-Ruismki K, et al . Process Control and Quality , 1999 , 11(4) : 255 —263
[13] Chai X S , Zhu J Y, Li J . J . Pulp &Paper Sci . , 2002 , 28(4) :105 —109
[14] Chai X S , Zhu J Y, Li J . J . Pulp &Paper Sci . , 2002 , 28(4) :110 —114
[15] Chai X S , Hou Q X, Zhu J Y, et al . Industrial & Engineering Chemistry Research , 2003 , 42 : 254 —258
[16] Chai X S , Luo Q , Zhu J Y, et al . J . Pulp &Paper Sci . , 2003 ,29(6) : 204 —207
[17] Chai X S , Zhu J Y. Process Control and Quality , 2002 , 11 (6) :531 —538
[18] Workman J J , Mobley P R , Kowalski B R , et al . Appl .Spectrosc. Rev. , 1996 , 31(1/2) : 73 —80
[19] Brown S D , Sum S T , Despagne F , et al . Anal . Chem. , 1996 ,68 : 21R —26R
[20] Geladi P , Kowalski B R. Anal . Chim. Acta , 1986 , 185 : 1 —7
[21] Hoskuldsson A. J . Chemometrics , 1988 , 2 : 211 —216
[22] Andersson G. Ph D Dissertation of Royal Institute of Technology (KTH) . Stockholm, 1998
[23] Kowalski B R , Seasholtz M B. J . Chemometrics , 1988 , 2 : 93 —98
[24] Sekulic S , Seasholtz M B , Wang Z , et al . Anal . Chem. , 1993 ,65(19) : 835A —845A
[25] Chai X S , Hou Q X, Verrill C L. J . Pulp &Paper Sci . , 2005 ,31(2) : 81 —84
[26] Florence A J , Johnson A. Spectroscopy Europe , 2004 16 ( 6) :24 —27
[27] Thompson D R , Kougoulos E , Jones A G, et al . J . Crystal .Growth , 2005 , 276 : 230 —236
[28] Chai X S , Schork F J , Oliver E M. J . Appl . Polymer Sci . ,2006 : 99 (4) 1471 —1475

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[9] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[10] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[11] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[12] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[13] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[14] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[15] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.