English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 263-373 DOI: 10.7536/PC220720 前一篇   后一篇

• 综述 •

碳点基水相室温磷光复合材料研究进展

廖子萱1,2, 王宇辉1,*(), 郑建萍1,*()   

  1. 1 中国科学院宁波材料技术与工程研究所 宁波 315201
    2 温州医科大学 温州 325035
  • 收稿日期:2022-07-14 修回日期:2022-09-30 出版日期:2023-02-24 发布日期:2022-10-31
  • 基金资助:
    浙江省自然科学基金(LY20B050003); 宁波市3315创新团队项目(2019A-14-C)

Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites

Zixuan Liao1,2, Yuhui Wang1(), Jianping Zheng1()   

  1. 1 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 Wenzhou Medical University,Wenzhou 325035, China
  • Received:2022-07-14 Revised:2022-09-30 Online:2023-02-24 Published:2022-10-31
  • Contact: *e-mail: wangyuhui@nimte.ac.cn (Yuhui Wang); zhengjianping@nimte.ac.cn (Jianping Zheng)
  • Supported by:
    Zhejiang Provincial National Natural Science Foundation of China(LY20B050003); Ningbo 3315 Innovation Teams Program(2019A-14-C)

室温磷光(RTP)凭借较长的发光寿命和强烈的环境敏感特性,在化学/生物传感、生物成像、高级光学防伪与信息加密等诸多领域表现出广阔的应用前景。近些年,具有制备简单、化学惰性、低毒性、易功能化等优势的固态非金属室温磷光碳点获得了研究者的青睐。然而,其磷光发射易受水环境中溶解氧和水分子影响而淬灭,导致其应用局限于固态基质(如防伪油墨)。因而,如何稳定水相下碳点的激发三重态是实现其RTP发射与应用的关键。本文依据近年来碳点基水相RTP复合材料的最新研究进展,归纳总结了其构建策略及在传感、成像及防伪等方面的应用,并探讨了其面临的挑战及未来的发展方向。

Due to the unique merits of long luminescence lifetime and environmental sensitivity, room temperature phosphorescence (RTP) has demonstrated great potential in many fields, e.g., chemo/biosensing, bioimaging, biomedicine, and advanced optical anti-counterfeiting and encryption. In recent years, non-metal doped solid state room temperature phosphorescent (RTP) carbon-dots (CDs) have attracted broad attention because of their facile preparation, chemical inertness, low toxicity, easy surface modification, and so on. However, in an aqueous environment, their RTP emissions suffer from serious triplet quenching that induced by dissolved oxygen and water molecule. How to stabilize the triplet state in aqueous phase is the key to establish their RTP emission, and thus it is necessary to look back the state-of-the-art knowledge of CDs-based water-soluble RTP materials. In this review, in light of the recent advance, we summarize and discuss their synthesis strategies (e.g., inorganic salt melting, SiO2 coating, polymer combination, and hydrogen bond network stabilization), and relevant applications in sensing, imaging and anti-counterfeiting, and finally propose the challenging and future prospects. To the best of our knowledge, this is the first review on the synthesis and applications of hydrophilic RTP materials based on CDs. We hope that this review will provide inspiration for the further fabrication and versatile biological uses of CDs-based RTP materials.

Contents

1 Introduction

2 Synthetic strategies

2.1 Inorganic salt melting method

2.2 SiO2 coating

2.3 Polymer-based hydrogen stabilization

2.4 Rigid hydrogen bond network stabilization

3 Applications

3.1 Anti-counterfeiting and information encryption

3.2 Detections of metal ions and small molecules

3.3 Biological detection and imaging

3.4 Other applications

4 Conclusion and outlook

()
图1 荧光、磷光及延迟荧光原理示意图
Fig.1 Schematic illustration of fluorescence (FL), phosphorescence (PL) and delayed fluorescence (DF)
图2 水相RTP碳点的发展时间线[31,45???~49]
Fig.2 Development timeline of CDs-based RTP materials in aqueous phase[31,45???~49]
图3 (a)熔盐法制备CDs@MP示意图;(b)CDs-MP粉末及其水溶液在紫外灯辐照关闭后的磷光图片[49]
Fig.3 (a) The schematic illustration of the molten salt method for the in situ synthesis of CDs@MP nanocomposites; (b) RTP digital photographs of CDs@MP (power and aqueous solution) under ultraviolet light[49]
图4 (a)TEOS直接水解包覆的CDs-RhB@SiO2形成示意图[31];(b)表面共价固定法制备的CDs@SiO2形成示意图和紫外激发下的水相RTP照片[54]
Fig.4 (a) Schematic diagram of the formation of CDs-RhB@SiO2 via a TEOS hydrolysis-based coating[31]; (b) schematic illustration of the preparation of CDs@SiO2 using surface covalent fixation and the RTP photographs in aqueous solution under the UV excitation[54]
图5 (a)CDs/PVA薄膜的构筑以及RTP产生的机理[65];(b)碳点-氰尿酸氢键网络复合体系的构筑与结构示意图[66];(c)碳点-三聚氰胺水相RTP纳米复合体系的制备与结构示意图[48]
Fig.5 (a) Schematic illustration of the fabrication and RTP emission mechanism of the CDs/PVA film[65]; (b) the construction and structure schematic illustration of the CDs-CA hydrogen bond network[66]; (c) the fabrication and hydrogen bond structure schematic illustration of the CDs-melamine nano-hybrids[48]
图6 碳点基水相RTP材料的应用。(a)m-CDs@nSiO2复合材料用于信息加密与解密[47];(b)CDs-PVA磷光薄膜用于Fe3+传感[65];(c)CDs@SiO2水相RTP纳米复合体系应用于小鼠乳腺癌细胞的荧光与时间分辨成像[54];(d)氮掺杂磷光碳点用于光动力抗菌[87]
Fig.6 The applications of CDs-based water-soluble RTP materials. (a) Information encryption and decryption via the m-CDs@nSiO2 composites[47]; (b) Schematic illustration of the CDs-PVA RTP thin film for Fe3+ sensing[65]; (c) Fluorescence and time resolution imaging via the CDs@SiO2 aqueous RTP nanocomposites[54]; (d) Photodynamic antibacterial application using the nitrogen-doped phosphorescent carbon-dots[87]
[1]
O'Haver T C. J. Chem. Educ., 1978, 55(7): 423.

doi: 10.1021/ed055p423     URL    
[2]
Lewis G N, Kasha M. J. Am. Chem. Soc., 1944, 66(12): 2100.

doi: 10.1021/ja01240a030     URL    
[3]
Lewis G N, Lipkin D, Magel T T. J. Am. Chem. Soc., 1941, 63(11): 3005.

doi: 10.1021/ja01856a043     URL    
[4]
Kuijt J, Ariese F, Brinkman U A T, Gooijer C. Anal. Chimica Acta, 2003, 488(2): 135.

doi: 10.1016/S0003-2670(03)00675-5     URL    
[5]
Roth M. J. Chromatogr. A, 1967, 30: 276.

doi: 10.1016/S0021-9673(00)84159-X     URL    
[6]
Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135(38): 14125.

doi: 10.1021/ja404243v     URL    
[7]
Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G. Chem. Soc. Rev., 2014, 43(10): 3259.

doi: 10.1039/C3CS60449G     URL    
[8]
Li Z J, Zhang Y W, Wu X, Huang L, Li D S, Fan W, Han G. J. Am. Chem. Soc., 2015, 137(16): 5304.

doi: 10.1021/jacs.5b00872     URL    
[9]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984     pmid: 21336325
[10]
Kwon M S, Lee D, Seo S, Jung J, Kim J. Angew. Chem., 2014, 126(42): 11359.

doi: 10.1002/ange.201404490     URL    
[11]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984     pmid: 21336325
[12]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y     URL    
[13]
Hirata S. Adv. Opt. Mater., 2017, 5(17): 1700116.

doi: 10.1002/adom.201700116     URL    
[14]
Lower S K, El-Sayed M A. Chem. Rev., 1966, 66(2): 199.

doi: 10.1021/cr60240a004     URL    
[15]
Modern Molecular Photochemistry. Eds.: Turro N. J, University science books, 1991.
[16]
Zhang G Q, Palmer G M, Dewhirst M W, Fraser C L. Nat. Mater., 2009, 8(9): 747.

doi: 10.1038/nmat2509    
[17]
Deng Y C, Li P, Jiang H Y, Ji X, Li H R. J. Mater. Chem. C, 2019, 7(43): 13640.

doi: 10.1039/C9TC04863D     URL    
[18]
Han Z C, Li P, Deng Y C, Li H R. Chem. Eng. J., 2021, 415: 128999.

doi: 10.1016/j.cej.2021.128999     URL    
[19]
Jiang K, Hu S Z, Wang Y C, Li Z J, Lin H W. Small, 2020, 16(31): 2001909.

doi: 10.1002/smll.v16.31     URL    
[20]
Sun Y Q, Liu S T, Sun L Y, Wu S S, Hu G Q, Pang X L, Smith A T, Hu C F, Zeng S S, Wang W X, Liu Y L, Zheng M T. Nat. Commun., 2020, 11: 5591.

doi: 10.1038/s41467-020-19422-4    
[21]
Tan J, Li Q J, Meng S, Li Y C, Yang J, Ye Y X, Tang Z K, Qu S N, Ren X D. Adv. Mater., 2021, 33(16): 2006781.

doi: 10.1002/adma.v33.16     URL    
[22]
Zhou Z J, Ushakova E V, Liu E S, Bao X, Li D, Zhou D, Tan Z N, Qu S N, Rogach A L. Nanoscale, 2020, 12(20): 10987.

doi: 10.1039/D0NR02639E     URL    
[23]
Bao X, Ushakova E V, Liu E S, Zhou Z J, Li D, Zhou D, Qu S N, Rogach A L. Nanoscale, 2019, 11(30): 14250.

doi: 10.1039/C9NR05123F     URL    
[24]
Zhao B, Tan Z A. Adv. Sci., 2021, 8(7): 2001977.

doi: 10.1002/advs.v8.7     URL    
[25]
Zhu S J, Song Y B, Wang J, Wan H, Zhang Y, Ning Y, Yang B. Nano Today, 2017, 13: 10.

doi: 10.1016/j.nantod.2016.12.006     URL    
[26]
Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8(2): 355.

doi: 10.1007/s12274-014-0644-3     URL    
[27]
Zhu S J, Song Y B, Shao J R, Zhao X H, Yang B. Angew. Chem. Int. Ed., 2015, 54(49): 14626.

doi: 10.1002/anie.v54.49     URL    
[28]
Jiang K, Gao X L, Feng X Y, Wang Y H, Li Z J, Lin H W. Angew. Chem. Int. Ed., 2020, 59: 1263.

doi: 10.1002/anie.201911342     pmid: 31715082
[29]
Jiang K, Wang Y C, Lin C J, Zheng L C, Du J R, Zhuang Y X, Xie R J, Li Z J, Lin H W. Light. Sci. Appl., 2022, 11: 80.

doi: 10.1038/s41377-022-00767-y    
[30]
Mo L Q, Liu H, Liu Z M, Xu X K, Lei B F, Zhuang J L, Liu Y L, Hu C F. Adv. Opt. Mater., 2022, 10(10): 2102666.

doi: 10.1002/adom.v10.10     URL    
[31]
Liang Y C, Cao Q, Liu K K, Peng X Y, Sui L Z, Wang S P, Song S Y, Wu X Y, Zhao W B, Deng Y, Lou Q, Dong L, Shan C X. ACS Nano, 2021, 15(10): 16242.

doi: 10.1021/acsnano.1c05234     URL    
[32]
Dong X W, Wei L M, Su Y J, Li Z L, Geng H J, Yang C, Zhang Y F. J. Mater. Chem. C, 2015, 3(12): 2798.

doi: 10.1039/C5TC00126A     URL    
[33]
Li Q J, Zhou M, Yang Q F, Wu Q, Shi J, Gong A H, Yang M Y. Chem. Mater., 2016, 28(22): 8221.

doi: 10.1021/acs.chemmater.6b03049     URL    
[34]
Liu H Z, Wang F, Wang Y P, Mei J J, Zhao D X. ACS Appl. Mater. Interfaces, 2017, 9(21): 18248.

doi: 10.1021/acsami.7b01067     URL    
[35]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H. Sci. Adv., 2017, 3(5): 1603171.
[36]
Jiang K, Wang Y H, Cai C Z, Lin H W. Adv. Mater., 2018, 30(26): 1800783.

doi: 10.1002/adma.v30.26     URL    
[37]
Tao S Y, Lu S Y, Geng Y J, Zhu S J, Redfern S A T, Song Y B, Feng tanglue, Xu W Q, Yang B. Angew. Chem. Int. Ed., 2018, 57(9): 2393.

doi: 10.1002/anie.201712662     URL    
[38]
Long P, Feng Y Y, Cao C, Li Y, Han J K, Li S W, Peng C, Li Z Y, Feng W. Adv. Funct. Mater., 2018, 28(37): 1870263.

doi: 10.1002/adfm.v28.37     URL    
[39]
Wang F, Xie Z, Zhang H, Liu C Y, Zhang Y G. Adv. Funct. Mater., 2011, 21(6): 1027.

doi: 10.1002/adfm.201002279     URL    
[40]
Zhu R H, Jing W, Zhu J. Principle and application of room temperature phosphorescence analysis. Beijing: Science Press, 1991, 1.
(朱若华, 金伟军. 室温磷光分析法原理与应用. 北京: 科学出版社, 1991, 1.).
[41]
Ma Q Q, Wang J, Li Z H, Lv X B, Liang L, Yuan Q. Small, 2019, 15(32): 1804969.

doi: 10.1002/smll.v15.32     URL    
[42]
Sun S K, Wang H F, Yan X P. Acc. Chem. Res., 2018, 51(5): 1131.

doi: 10.1021/acs.accounts.7b00619     URL    
[43]
Wang Y S, Gao H Q, Yang J, Fang M M, Ding D, Tang B Z, Li Z. Adv. Mater., 2021, 33(18): 2007811.

doi: 10.1002/adma.v33.18     URL    
[44]
Yang J H, Zhang Y H, Wu X H, Dai W B, Chen D, Shi J B, Tong B, Peng Q, Xie H Y, Cai Z X, Dong Y P, Zhang X. Nat. Commun., 2021, 12: 4883.

doi: 10.1038/s41467-021-25174-6    
[45]
Deng Y H, Zhao D X, Chen X, Wang F, Song H, Shen D Z. Chem. Commun., 2013, 49(51): 5751.

doi: 10.1039/c3cc42600a     URL    
[46]
Wang W, Li Y M, Cheng L, Cao Z Q, Liu W G. J. Mater. Chem. B, 2014, 2(1): 46.

doi: 10.1039/c3tb21370f     pmid: 32261297
[47]
Jiang K, Wang Y H, Cai C Z, Lin H W. Chem. Mater., 2017, 29(11): 4866.

doi: 10.1021/acs.chemmater.7b00831     URL    
[48]
Gao Y F, Zhang H L, Jiao Y, Lu W J, Liu Y, Han H, Gong X J, Shuang S M, Dong C. Chem. Mater., 2019, 31(19): 7979.

doi: 10.1021/acs.chemmater.9b02176     URL    
[49]
Wang C, Chen Y Y, Xu Y L, Ran G X, He Y M, Song Q J. ACS Appl. Mater. Interfaces, 2020, 12(9): 10791.

doi: 10.1021/acsami.9b20500     URL    
[50]
Wang J, Sun X B, Pan W, Wang J P. Microchem. J., 2022, 178: 107408.

doi: 10.1016/j.microc.2022.107408     URL    
[51]
Feng tanglue, Zhu S J, Zeng Q S, Lu S Y, Tao S Y, Liu J J, Yang B. ACS Appl. Mater. Interfaces, 2018, 10(15): 12262.

doi: 10.1021/acsami.7b14857     URL    
[52]
Li Q J, Zhou M, Yang M Y, Yang Q F, Zhang Z X, Shi J. Nat. Commun., 2018, 9: 734.

doi: 10.1038/s41467-018-03144-9    
[53]
Wang C, Chen Y Y, Hu T T, Chang Y, Ran G X, Wang M, Song Q J. Nanoscale, 2019, 11(24): 11967.

doi: 10.1039/c9nr03038g     pmid: 31188373
[54]
Li W, Wu S S, Xu X K, Zhuang J L, Zhang H R, Zhang X J, Hu C F, Lei B F, Kaminski C F, Liu Y L. Chem. Mater., 2019, 31(23): 9887.

doi: 10.1021/acs.chemmater.9b04120     URL    
[55]
Jia J, Lu W J, Gao Y F, Li L, Dong C, Shuang S M. Talanta, 2021, 231: 122350.

doi: 10.1016/j.talanta.2021.122350     URL    
[56]
Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5     URL    
[57]
Arriagada F J, Osseo-Asare K. J. Colloid Interface Sci., 1999, 211(2): 210.

doi: 10.1006/jcis.1998.5985     URL    
[58]
Li C Y, Duan T, Yang Y S. Mater. Rev., 2009, 23(S1): 151.
(李朝毅, 段涛, 杨玉山. 材料导报, 2009, 23(S1): 151.).
[59]
Ma Y, Chen H S, Zhang W L, Wang J L. Chemistry, 2013, 76(4): 364.
(马勇, 陈宏书, 张五龙, 王结良. 化学通报, 2013, 76(4): 364.).
[60]
Wang F Y, Peng Q Q, Hu J, Hu X, Peng H Q, Li L, Xiao D, Zheng B Z, Du J. New J. Chem., 2019, 43(31): 12410.

doi: 10.1039/C9NJ02151E     URL    
[61]
Zhou T Y, Wang Q, Li H, Wang Y. J. Mol. Sci., 2021(6): 501.
(周天越, 王权, 李皓, 王耀. 分子科学学报, 2021, 37(06): 501.).
[62]
Hao C X, Bai Y F, Chen Z Z, Geng F S, Qin J, Zhou T, Feng F. Dyes Pigments, 2022, 197: 109890.

doi: 10.1016/j.dyepig.2021.109890     URL    
[63]
Hao C X, Bai Y F, Zhao L, Bao Y Y, Bian J N, Xu H, Zhou T, Feng F. Dyes Pigments, 2022, 198: 109955.

doi: 10.1016/j.dyepig.2021.109955     URL    
[64]
Jiang K, Zhang L, Lu J F, Xu C X, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2016, 55(25): 7231.

doi: 10.1002/anie.201602445     pmid: 27135645
[65]
Wu X Y, Ma C H, Liu J C, Liu Y S, Luo S, Xu M C, Wu P, Li W, Liu S X. ACS Sustainable Chem. Eng., 2019, 7(23): 18801.

doi: 10.1021/acssuschemeng.9b03281     URL    
[66]
Li Q J, Zhou M, Yang M Y, Yang Q F, Zhang Z X, Shi J. Nat. Commun., 2018, 9: 734.

doi: 10.1038/s41467-018-03144-9    
[67]
Zheng Y, Zhou Q, Yang Y, Chen X H, Wang C, Zheng X, Gao L, Yang C L. Small, 2022, 18(19): 2201223.

doi: 10.1002/smll.v18.19     URL    
[68]
Sánchez-Barragán I, Costa-Fernández J M, Sanz-Medel A, Valledor M, Campo J C. Trac Trends Anal. Chem., 2006, 25(10): 958.

doi: 10.1016/j.trac.2006.07.009     URL    
[69]
Kuijt J, Ariese F, Brinkman U A T, Gooijer C. Anal. Chim. Acta, 2003, 488(2): 135.

doi: 10.1016/S0003-2670(03)00675-5     URL    
[70]
Wang H F, He Y, Ji T R, Yan X P. Anal. Chem., 2009, 81(4): 1615.

doi: 10.1021/ac802375a     pmid: 19170523
[71]
He Y, Wang H F, Yan X P. Anal. Chem., 2008, 80(10): 3832.

doi: 10.1021/ac800100y     URL    
[72]
Tan L, Kang C C, Xu S Y, Tang Y W. Biosens. Bioelectron., 2013, 48: 216.

doi: 10.1016/j.bios.2013.04.024     URL    
[73]
Lu C S, Su Q, Yang X M. Nanoscale, 2019, 11(34): 16036.

doi: 10.1039/C9NR03989A     URL    
[74]
Fu M, Feng Z Y, Wang J, Zhu Y, Gan L L, Yang X M. Appl. Surf. Sci., 2022, 571: 151298.

doi: 10.1016/j.apsusc.2021.151298     URL    
[75]
Feng Z Y, Wang J C, Chen X, Liu J, Zhu Y, Yang X M. Colloids Surf. B Biointerfaces, 2022, 210: 112236.

doi: 10.1016/j.colsurfb.2021.112236     URL    
[76]
Su Q, Gan L L, Zhu Y, Yang X M. Sens. Actuat. B Chem., 2021, 335: 129715.

doi: 10.1016/j.snb.2021.129715     URL    
[77]
Baker S N, Baker G A. Angew. Chem., Int. Ed., 2010, 49: 6726.

doi: 10.1002/anie.200906623     URL    
[78]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h     URL    
[79]
Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230.

doi: 10.1039/c2jm34690g     URL    
[80]
Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37): 11318.

pmid: 17722926
[81]
Zhai X Y, Zhang P, Liu C J, Bai T, Li W C, Dai L M, Liu W G. Chem. Commun., 2012, 48(64): 7955.

doi: 10.1039/c2cc33869f     URL    
[82]
Tao H Q, Yang K, Ma Z, Wan J M, Zhang Y J, Kang Z H, Liu Z. Small, 2012, 8(2): 281.

doi: 10.1002/smll.201101706     URL    
[83]
Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308.

doi: 10.1021/ja904843x     URL    
[84]
Wang Q L, Huang X X, Long Y J, Wang X L, Zhang H J, Zhu R, Liang L P, Teng P, Zheng H Z. Carbon, 2013, 59: 192.

doi: 10.1016/j.carbon.2013.03.009     URL    
[85]
Liu C J, Zhang P, Zhai X Y, Tian F, Li W C, Yang J H, Liu Y, Wang H B, Wang W, Liu W G. Biomaterials, 2012, 33(13): 3604.

doi: 10.1016/j.biomaterials.2012.01.052     URL    
[86]
Liang Y C, Gou S S, Liu K K, Wu W J, Guo C Z, Lu S Y, Zang J H, Wu X Y, Lou Q, Dong L, Gao Y F, Shan C X. Nano Today, 2020, 34: 100900.

doi: 10.1016/j.nantod.2020.100900     URL    
[87]
Zhang J Y, Lu X M, Tang D D, Wu S H, Hou X D, Liu J W, Wu P. ACS Appl. Mater. Interfaces, 2018, 10(47): 40808.

doi: 10.1021/acsami.8b15318     URL    
[88]
Miao W F, Zou W S, Zhao Q C, Wang Y Q, Chen X, Wu S B, Liu Z M, Xu T W. J. Membr. Sci., 2021, 639: 119754.

doi: 10.1016/j.memsci.2021.119754     URL    
[89]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2015, 54(18): 5360.

doi: 10.1002/anie.201501193     pmid: 25832292
[90]
Kang C Y, Tao S Y, Yang F, Yang B. Aggregate, 2022, 3(2): e169.
[91]
Wu T Y, Huang J B, Yan Y. Cell Rep. Phys. Sci., 2022, 3(2): 100771.
[92]
Wang J F, Li A S, Li Z. Prog. Chem., 2022(3): 487.
(王金凤, 李爱森, 李振. 化学进展, 2022(3): 487.).
[93]
Song S Y, Liu K K, Cao Q, Mao X, Zhao W B, Wang Y, Liang Y C, Zang J H, Lou Q, Dong L, Shan C X. Light. Sci. Appl., 2022, 11: 146.

doi: 10.1038/s41377-022-00837-1    
[94]
Yang X, Ai L, Yu J K, Waterhouse G I N, Sui L Z, Ding J, Zhang B W, Yong X, Lu S Y. Sci. Bull., 2022, 67(14): 1450.

doi: 10.1016/j.scib.2022.06.013     pmid: 36546188
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[6] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[9] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[10] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[11] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[12] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[13] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[14] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[15] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.