English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1678-1687 DOI: 10.7536/PC210920 前一篇   后一篇

• 综述 •

贵金属催化剂上氢气选择性催化还原NOx

贾斌1,2, 刘晓磊1,2, 刘志明1,2,*()   

  1. 1 北京化工大学化工资源有效利用国家重点实验室 北京 100029
    2 北京化工大学北京市环境污染控制与资源化工程研究中心 北京 100029
  • 收稿日期:2021-09-18 修回日期:2022-01-04 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 刘志明
  • 基金资助:
    国家自然科学基金项目(21876009); 中央高校基本科研业务费项目(JD2110)

Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts

Bin Jia1,2, Xiaolei Liu1,2, Zhiming Liu1,2()   

  1. 1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    2 Beijing Center for Environmental Pollution Control and Resource Recovery, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2021-09-18 Revised:2022-01-04 Online:2022-04-01 Published:2022-04-01
  • Contact: Zhiming Liu
  • Supported by:
    National Natural Science Foundation of China(21876009); Fundamental Research Funds for the Central Universities(JD2110)

NOx的控制对于改善大气环境质量具有重要意义,而氢气选择性催化还原(H2-SCR)NOx作为一种高效环保的脱硝技术而备受关注。本文总结概述了近年来贵金属催化剂在H2-SCR脱硝反应中的研究进展,首先介绍了H2-SCR反应机理,在此基础上分别论述了影响贵金属催化剂性能的因素(如活性组分、载体类型、助剂添加及组分存在形式等)及催化剂结构与性能的构效关系。最后,针对目前存在的问题展望了H2-SCR脱硝未来的发展方向。

The control of NOx is very important for the air quality improvement. Selective catalytic reduction of NOx by hydrogen (H2-SCR) has attracted much attention as an efficient and environmentally benign deNOx technology. In this review, we summarize the research development in the H2-SCR of NOx over noble metal catalysts. The typical H2-SCR reaction mechanisms are introduced first. Then the factors affecting the H2-SCR performance of noble metal catalysts, such as the active metal, support type, the added promoter and the nature of active metal, and the structure-activity relationship have been discussed. Finally, the challenges and the prospects for future development of H2-SCR catalyst are proposed.

Contents

1 Introduction

2 The reaction mechanisms of H2-SCR

2.1 Redox mechanism

2.2 Adsorption/dissociation of NO

2.3 Bifunction mechanism

3 Noble metal H2-SCR catalyst

3.1 Effect of active metal

3.2 Effect of the support

3.3 Effects of the additives

3.4 Alloy catalyst

3.5 Single atom catalyst

4 Conclusion and perspective

()
图1 Pt/MgO-CeO2催化剂上H物种表面扩散反应机理[7]
Fig. 1 Mechanism of surface diffusion reaction of H species on Pt/MgO-CeO2 catalyst[7]
图2 Pt/La0.5Ce0.5MnO3催化剂上的NO吸附-离解机理[14]
Fig. 2 Schematic diagram of NO adsorption and dissociation over the Pt/La0.5Ce0.5MnO3 catalyst[14]
图3 Pd/V2O5/TiO2-Al2O3催化剂上的H2-SCR反应机理图[15]
Fig. 3 Reaction scheme of H2-SCR of NOx on Pd/V2O5/TiO2-Al2O3 catalyst[15]
图4 Pt/SSZ-13催化剂在不同温度下的反应途径[19]
Fig. 4 Reaction routes of Pt/SSZ-13 catalyst at different temperatures[19]
图5 Pt/h-ZSM-5催化剂在不同温度下的反应路径[18]
Fig. 5 Reaction routes of Pt/h-ZSM-5 catalyst in the different ranges of temperature[18]
图6 Pt-HY催化剂上H2-SCR的反应机理[20]
Fig. 6 Mechanism diagram of H2-SCR reaction on Pt-HY catalyst[20]
图7 NO的转化数(TOF)与Pd粒径的关系[25]
Fig. 7 Relationship between the TOF of NO and the Pd particle size[25]
图8 牺牲碳层策略制备Pt/TiO2催化剂的示意图[27]
Fig. 8 Scheme for the preparation of Pt/TiO2 catalyst using the sacrificial carbon layer strategy[27]
图9 Pt/TiO2和Pt/TiO2(M)催化剂的活性比较[27]
Fig. 9 Comparison of the activities of Pt/TiO2 and Pt/TiO2-M catalysts[27]
图10 MOF材料为模板合成介孔Pt/ZrO2@C纳米八面体流程图[43]
Fig. 10 Schematic illustration of the synthesis of MOF-derived porous Pt/ZrO2@C nano-octahedra[43]
图11 Pt/HZSM-5 和 Pt-W/HZSM-5催化剂H2-SCR活性的比较。反应条件:[NO] = 1000 ppm,[H2] =5000 ppm,[O2] = 10%[48]
Fig. 11 H2-SCR performance of Pt/HZSM-5 and Pt-W/HZSM-5 catalysts. Reaction conditions:[NO] = 1000 ppm, [H2] =5000 ppm, [O2] = 10%[48]
图12 Pt-SAC(a)和Pt-nano(b)催化剂的HAADF-STEM图[62]
Fig. 12 HAADF-STEM images of (a)Pt-SAC and (b)Pt-nano catalysts[62]
[1]
Liu Z M, Woo S I, Catal. Rev. Sci. Eng., 2006, 48: 43.

doi: 10.1080/01614940500439891     URL    
[2]
Wang J H, Zhao H W, Haller G, Li Y D. Appl. Catal. B Environ., 2017, 202: 346.

doi: 10.1016/j.apcatb.2016.09.024     URL    
[3]
Zhang C B, He H, Shuai S J, Wang J X. Environ. Pollut., 2007, 147(2): 415.

doi: 10.1016/j.envpol.2006.05.030     URL    
[4]
Liu Z M, Wu J P, Hardacre C. Catal. Surv. Asia, 2018, 22(3): 146.

doi: 10.1007/s10563-018-9248-3     URL    
[5]
Yuan L, Zheng X, Duan K J, Hu H, Wang J G, Woo S I, Liu Z M. Front. Environ. Sci. Eng., 2013, 7(3): 457.

doi: 10.1007/s11783-013-0512-5     URL    
[6]
Hu Z, Yang R T. Ind. Eng. Chem. Res., 2019, 58(24): 10140.
[7]
Savva P G, Efstathiou A M. J. Catal., 2008, 257(2): 324.

doi: 10.1016/j.jcat.2008.05.010     URL    
[8]
Wang L F, Yin C Y, Yang R T. Appl. Catal. A Gen., 2016, 514: 35.

doi: 10.1016/j.apcata.2016.01.013     URL    
[9]
Costa C N, Angelos M, Efstathiou A M. Appl. Catal. B Environ., 2007, 72: 240.

doi: 10.1016/j.apcatb.2006.11.010     URL    
[10]
Machida M, Ikeda S, Kurogi D, Kijima T. Appl. Catal. B Environ., 2001, 35(2): 107.

doi: 10.1016/S0926-3373(01)00243-0     URL    
[11]
Burch R, Watling T C. Catal. Lett., 1996, 37(1/2): 51.

doi: 10.1007/BF00813519     URL    
[12]
Shustorovich E, Bell A T. Surf. Sci., 1993, 289: 127.

doi: 10.1016/0039-6028(93)90892-N     URL    
[13]
Peng Z Z, Li Z Y, Liu Y Q, Yan S, Tong J N, Wang D, Ye Y Y, Li S R. Chem. Commun., 2017, 53(44): 5958.

doi: 10.1039/C7CC02235B     URL    
[14]
Costa C N, Stathopoulos V N, Belessi V C, Efstathiou A M. J. Catal., 2001, 197(2): 350.

doi: 10.1006/jcat.2000.3101     URL    
[15]
Qi G, Yang R T, Rinaldi F C. J. Catal., 2006, 237(2): 381.

doi: 10.1016/j.jcat.2005.11.025     URL    
[16]
Jin X, Wen H, Liu J Y. J. Phys. Chem. C, 2020, 124(18): 9908.

doi: 10.1021/acs.jpcc.0c00308     URL    
[17]
Hong Z, Sun X Y, Wang Z, Zhao G Q, Li X B, Zhu Z R. Catal. Sci. Technol., 2019, 9(15): 3994.

doi: 10.1039/c9cy00898e    
[18]
Hong Z, Wang Z, Chen D, Sun Q, Li X B. Appl. Surf. Sci., 2018, 440: 1037.

doi: 10.1016/j.apsusc.2018.01.239     URL    
[19]
Komatsubara M, Koga A, Tanaka M, Hagiwara R, Iwamoto M. Catal. Sci. Technol., 2016, 6(20): 7398.

doi: 10.1039/C6CY01166G     URL    
[20]
Zhang X X, Wang X P, Zhao X J, Xu Y Z, Gao H, Zhang F F. Chem. Eng. J., 2014, 252: 288.

doi: 10.1016/j.cej.2014.05.006     URL    
[21]
Brigitta F, Gerhard E, Albert R. Appl. Catal. B Environ., 1998, 19: 45.

doi: 10.1016/S0926-3373(98)00057-5     URL    
[22]
Park S M, Kim M Y, Kim E S, Han H S, Seo G. Appl. Catal. A Gen., 2011, 395(1/2): 120.

doi: 10.1016/j.apcata.2011.01.033     URL    
[23]
Granger P, Dhainaut F, Pietrzik S, Malfoy P, Mamede A S, Leclercq L, Leclercq G. Top. Catal., 2006, 39(1/2): 65.

doi: 10.1007/s11244-006-0039-0     URL    
[24]
Ueda A, Nakao T, Azuma M, Kobayashi T. Catal. Today, 1998, 45(1/4): 135.

doi: 10.1016/S0920-5861(98)00261-2     URL    
[25]
Savva Z, Petallidou K C, Damaskinos C M, Olympiou G G, Stathopoulos V N, Efstathiou A M. Appl. Catal. A Gen., 2021, 615: 118062.
[26]
Burch R, Coleman M D. Appl. Catal. B Environ., 1999, 23: 115.

doi: 10.1016/S0926-3373(99)00073-9     URL    
[27]
Liu Z M, Jia B, Zhang Y Y, Haneda M. Ind. Eng. Chem. Res., 2020, 59(31): 13916.
[28]
Costa C N, Efstathiou A M. J. Phys. Chem. C, 2007, 111(7): 3010.

doi: 10.1021/jp064952o     URL    
[29]
Liu Y, Tursun M, Yu H B, Wang X P. Mol. Catal., 2019, 464: 22.

doi: 10.1016/j.mcat.2018.12.015    
[30]
Itoh M, Motoki K, Saito M, Iwamoto J, Machida K I. Bull. Chem. Soc. Jpn., 2009, 82(9): 1197.

doi: 10.1246/bcsj.82.1197     URL    
[31]
Li X Y, Zhang X X, Xu Y Z, Liu Y, Wang X P. Chin. J. Catal., 2015, 36(2): 197.

doi: 10.1016/S1872-2067(14)60197-2     URL    
[32]
Qi G, Yang R T, Thompson L T. Appl. Catal. A Gen., 2004, 259(2): 261.

doi: 10.1016/j.apcata.2003.09.040     URL    
[33]
Sun W, Qiao K, Liu J Y, Cao L M, Gong X Q, Yang J. ACS Comb. Sci., 2016, 18(4): 195.

doi: 10.1021/acscombsci.5b00193     URL    
[34]
Costa C N, Savva P G, Andronikou C, Lambrou P S, Polychronopoulou K, Belessi V C, Stathopoulos V N, Pomonis P J, Efstathiou A M. J. Catal., 2002, 209(2): 456.

doi: 10.1006/jcat.2002.3645     URL    
[35]
Zhang C, Gao Y S, Yan Q H, Wang Q. Catal. Today, 2020, 355: 450.

doi: 10.1016/j.cattod.2019.07.006     URL    
[36]
Yu Q, Richter M, Kong F X, Li L D, Wu G J, Guan N J. Catal. Today, 2010, 158(3/4): 452.

doi: 10.1016/j.cattod.2010.06.031     URL    
[37]
Yang S F, Wang X P, Chu W L, Song Z N, Zhao S. Appl. Catal. B Environ., 2011, 107(3/4): 380.

doi: 10.1016/j.apcatb.2011.08.001     URL    
[38]
Cao L M, Wang Q, Yang J. J. Environ. Chem. Eng., 2020, 8(1): 103631.
[39]
Li L D, Wu P, Yu Q, Wu G J, Guan N J. Appl. Catal. B Environ., 2010, 94(3/4): 254.

doi: 10.1016/j.apcatb.2009.11.016     URL    
[40]
Wu P, Li L D, Yu Q, Wu G J, Guan N J. Catal. Today, 2010, 158(3/4): 228.

doi: 10.1016/j.cattod.2010.03.023     URL    
[41]
Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J, Zhou H C. Coord. Chem. Rev., 2009, 253(23/24): 3042.

doi: 10.1016/j.ccr.2009.05.019     URL    
[42]
Xue Y J, Sun W, Wang Q, Cao L M, Yang J. Chem. Eng. J., 2018, 335: 612.

doi: 10.1016/j.cej.2017.11.011     URL    
[43]
Wang Q, Sun W, Xie T Y, Cao L M, Yang J. Chem. Asian J., 2019, 14(3): 416.

doi: 10.1002/asia.201801680     URL    
[44]
Machida M, Watanabe T. Appl. Catal. B Environ., 2004, 52(4): 281.

doi: 10.1016/j.apcatb.2004.05.001     URL    
[45]
Li L D, Zhang F X, Guan N J, Schreier E, Richter M. Catal. Commun., 2008, 9(9): 1827.

doi: 10.1016/j.catcom.2008.02.019     URL    
[46]
Zhang Y Y, Zeng H, Jia B, Liu Z M. Catal. Today, 2021, 360: 213.

doi: 10.1016/j.cattod.2020.05.042     URL    
[47]
Liu Z M, Lu Y N, Yuan L, Ma L L, Zheng L R, Zhang J, Hu T D. Appl. Catal. B Environ., 2016, 188: 189.

doi: 10.1016/j.apcatb.2016.02.008     URL    
[48]
Zhang X X, Wang X P, Zhao X J, Xu Y Z, Liu Y, Yu Q. Chem. Eng. J., 2015, 260: 419.

doi: 10.1016/j.cej.2014.09.030     URL    
[49]
Burch R, Coleman M D. J. Catal., 2002, 208(2): 435.

doi: 10.1006/jcat.2002.3596     URL    
[50]
Yu Q, Richter M, Li L D, Kong F X, Wu G J, Guan N J. Catal. Commun., 2010, 11(11): 955.

doi: 10.1016/j.catcom.2010.03.021     URL    
[51]
Hu Z, Yong X, Li D, Yang R T. J. Catal., 2020, 381: 204.

doi: 10.1016/j.jcat.2019.11.006     URL    
[52]
MacLeod N, Lambert R M. Catal. Lett., 2003, 90(3/4): 111.

doi: 10.1023/B:CATL.0000004113.89067.1d     URL    
[53]
Borchers M, Keller K, Lott P, Deutschmann O. Ind. Eng. Chem. Res., 2021, 60(18): 6613.

doi: 10.1021/acs.iecr.0c05630     URL    
[54]
Duan K J, Chen B H, Zhu T L, Liu Z M. Appl. Catal. B Environ., 2015, 176/177: 618.

doi: 10.1016/j.apcatb.2015.04.048     URL    
[55]
Duan K J, Liu Z M, Yuan L. Chin. Sci. Bull., 2014, 59(31): 3973.

doi: 10.1007/s11434-014-0473-5     URL    
[56]
Tu B S, Sun W, Xue Y J, Zaman W Q, Cao L M, Yang J. ACS Sustainable Chem. Eng., 2017, 5(6): 5200.

doi: 10.1021/acssuschemeng.7b00540     URL    
[57]
Sun W, Wang Z Q, Wang Q, Zaman W Q, Cao L M, Gong X Q, Yang J. Chem. Commun., 2018, 54(68): 9502.

doi: 10.1039/C8CC05279D     URL    
[58]
Duan K J, Liu Z M, Li J H, Yuan L, Hu H, Woo S I. Catal. Commun., 2014, 57: 19.

doi: 10.1016/j.catcom.2014.07.033     URL    
[59]
Duan K J, Wang Z H, Hardacre C, Liu Z M, Chansai S, Stere C. Catal. Today, 2019, 332: 69.

doi: 10.1016/j.cattod.2018.06.022     URL    
[60]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095     URL    
[61]
Wang L, Zhang S R, Zhu Y, Patlolla A, Shan J J, Yoshida H, Takeda S, Frenkel A I, Tao F F. ACS Catal., 2013, 3(5): 1011.

doi: 10.1021/cs300816u     URL    
[62]
Lin J, Qiao B T, Li N, Li L, Sun X C, Liu J Y, Wang X D, Zhang T. Chem. Commun., 2015, 51(37): 7911.

doi: 10.1039/C5CC00714C     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[8] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[9] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[10] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[11] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[12] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[13] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[14] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[15] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.