English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2108-2120 DOI: 10.7536/PC211223 前一篇   

• 综述 •

基于碳点的发光材料在潜在手印显现中的应用

袁传军1,2,*(), 王猛1,2, 李明1,2, 包金鹏3, 孙鹏瑞1, 高荣轩1   

  1. 1 中国刑事警察学院刑事科学技术学院 沈阳 110035
    2 中国刑事警察学院新时代犯罪治理研究中心 沈阳 110035
    3 中国科学院长春应用化学研究所电分析化学国家重点实验室 长春 130022
  • 收稿日期:2021-12-22 修回日期:2022-03-24 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家自然科学基金项目(21802169); 国家自然科学基金项目(21205139); 辽宁省教育厅基本科研项目(LJKZ0076); 辽宁省教育厅基本科研项目(LJKZ0068); 中央高校基本科研业务费计划项目(D2021021); 辽宁省2020年度“百千万人才工程”项目和国家级大学生创新训练计划(202110175005)

Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints

Chuanjun Yuan1,2(), Meng Wang1,2, Ming Li1,2, Jinpeng Bao3, Pengrui Sun1, Rongxuan Gao1   

  1. 1 College of Forensic Sciences, Criminal Investigation Police University of China,Shenyang 110035, China
    2 Research Center of Crime Governance in the New Era, Criminal Investigation Police University of China,Shenyang 110035, China
    3 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2021-12-22 Revised:2022-03-24 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: yuancj11@mails.jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21802169); National Natural Science Foundation of China(21205139); Scientific Research Foundation of the Educational Department of Liaoning Province(LJKZ0076); Scientific Research Foundation of the Educational Department of Liaoning Province(LJKZ0068); Fundamental Research Funds for the Central Universities(D2021021); Liaoning BaiQianWan Talents Program in 2020, and the National Students Innovation Training Program(202110175005)

遗留在犯罪现场的肉眼不可见的潜在手印是一类重要的痕迹物证,检验鉴定前需要使用一定技术手段将其显现出来。近年来,一些新材料和新技术的引入为手印显现技术的革新注入了新活力,其中稀土发光材料、量子点、荧光金属纳米簇等发光材料在该领域展现出极大潜力。碳点作为具有良好光致发光性能的新型纳米材料,近来逐渐引起了手印显现领域研究人员的广泛关注。本文综述了两类基于碳点材料的手印显现技术国内外研究进展,分别是液体分散碳点用于手印显现和固态发光碳点用于手印显现。具体来说,液体分散碳点显现手印的原理主要基于传统小微粒悬浮液机理或一些特殊效应(咖啡环效应、界面偏析效应);用于手印显现的固态发光碳点包括固态碳点粉末和固态碳点复合粉末两类,合成这些材料时研究人员采用了不同的策略。最后,从三个方面分析了碳点在手印显现应用中面临的问题,即碳点物理形貌和表面性质、碳点光致发光性质以及碳点显现过程与化学生物分析兼容性,并就解决问题的可能途径提出了展望。

Latent fingerprints left at crime scenes are important trace evidence but invisible to the unaided eye. It is essential to use some methods to make latent fingerprints visible before analysis and identification. The introduction of new materials and techniques has promoted the innovation of fingerprint development methods in recent years. Especially many photoluminescent materials such as rare earth luminescent materials, quantum dots and fluorescent metal nano-clusters have shown high potentials in this field. Carbon dots (CDs), as a type of relatively new nanomaterial exhibiting good photoluminescent properties, have lately caught the attention of researchers in fingerprint development. In this paper, recent advances in the application of solution-dispersed CDs and solid-state CDs powders in fingerprint development are reviewed. To be specific, solution-dispersed CDs used in fingerprint development rely on either the classical mechanism of small particle reagents or some special effects including coffee-ring effect and interfacial segregation effect; while solid-state CDs powders used in fingerprint development include CDs powders and CDs-based composite powders which are prepared following different strategies. The challenges in this research area concerning morphologies and surface properties of CDs, photoluminescent properties of CDs, and compatibility with chemical and biological analysis are analyzed. Meanwhile, possible solutions are also proposed to provide guidance to researchers.

Contents

1 Introduction

2 Fingerprint development by solution-dispersed CDs

2.1 Solution-dispersed CDs as small particle reagents

2.2 Solution-dispersed CDs based on special effects

3 Fingerprint development by solid-state CDs powders

3.1 CDs powders

3.2 CDs-based composite powders

4 Conclusion and outlook

()
表1 液体分散碳点用于手印显现研究概况
Table 1 Summary of fingerprint development using solution-dispersed CDs
图1 液体分散O-CDs显现皮脂手印示意图[20]
Fig. 1 Schematic diagram of the development of sebaceous fingerprints using solution-dispersed O-CDs[20]
图2 碳化Tween 80制备W-CDs示意图[21]
Fig. 2 Schematic diagram of the preparation of W-CDs[21]
图3 (a)液体分散R-CDs显现皮脂手印示意图;(b)玻璃表面显出手印在紫外光下的荧光图像;共聚焦荧光显微镜拍摄玻璃表面显出手印图像:(c)干燥30 min的暗场图像,干燥60 min的(d)暗场图像和(e)明场图像,(f)合并(d)和(e)得到的图像[23]
Fig. 3 (a) Schematic diagram of the development of sebaceous fingerprints using solution-dispersed R-CDs; (b) Fluorescence (FL) image captured under UV light of a developed fingerprint on glass; FL images captured by a confocal fluorescence microscopy: (c) dark field after 30 min drying, (d) dark field and (e) bright field after 60 min drying, (f) merged image of (d) and (e)[23]. Copyright 2017, American Chemical Society
图4 (a)液体分散CDs/PVA显现皮脂手印示意图;(b)制备液体分散CDs/PVA示意图;从玻璃转印至CDs/PVA薄膜的手印图像:在自然光(c)和紫外光(d)下拍摄;(e)纹线区域和背景区域在400 nm激发光下的荧光发射光谱;荧光显微镜拍摄的从玻璃转印至CDs/PVA薄膜的手印图像:(f)λex = 360 nm,(g)λex = 430 nm和(h)λex = 530 nm[26]
Fig. 4 (a) Schematic diagram of the development of sebaceous fingerprints using solution-dispersed CDs/PVA; (b) schematic diagram of the preparation of solution-dispersed CDs/PVA; images of a fingerprint transferred from glass to CDs/PVA film: captured under (c) day light and (d) UV light; (e) FL emission spectra of fingerprint ridge area and background area of the CDs/PVA film under excitation light of 400 nm; FL microscopy images of a fingerprint transferred from glass to CDs/PVA film, captured under different excitation wavelengths: (f) 360 nm, (g) 430 nm and (h) 530 nm[26]. Copyright 2018, American Chemical Society
表2 碳点粉末用于手印显现研究概况
Table 2 Summary of fingerprint development using CDs powders
图5 (a)N,S-SFCDs粉末显现皮脂手印示意图;(b)铝箔表面显出手印在不同波长激发光下的荧光图像[41]
Fig. 5 (a) Schematic diagram of the development of sebaceous fingerprints using N,S-SFCDs powder; (b) FL images captured under different excitation wavelengths of a developed fingerprint on aluminum foil[41]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
表3 碳点复合粉末用于手印显现研究概况
Table 3 Summary of fingerprint development using CDs-based composite powders
Precursors of CDs Synthesis of CDs Development material Particle size Ex/Em ref
Malic acid, ammonium oxalate Pyrolysis CDs/starch UV/blue 50
Citric acid, glycine Hydrothermal CDs/starch UV/blue 51
p-Phenylenediamine Solvothermal CDs/starch UV/red 52
Citric acid, p-phenylenediamine, phytic acid Solvothermal CDs/starch 5 μm Green/red 53
Gelatin Hydrothermal Fe3O4@SiO2/CDs 120 nm UV/blue 54
Potato peel, melamine Hydrothermal CDs/ZnO UV/blue 55
Banana peel Hydrothermal CDs/Al2O3 White/— 56
Citric acid, cysteine Microwave pyrolysis CDs/PGV UV/blue 57
Citric acid, carbamide Microwave pyrolysis CDs/MMT UV/green 58
Citric acid, ethanolamine Pyrolysis CDs/(SiO2 or laponite) UV/blue, blue/green, green/red 59
Gum ghatti Microwave pyrolysis CDs/SiO2 UV/blue 60
Citric acid, thiourea Pyrolysis CDs/SiO2 UV/blue 61
Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride Pyrolysis SiO2@CDs 22 nm UV/blue, blue/green, green/red 62
[3-(2-Aminoethyl-amino)propyl]
trimethoxysilane, citric acid
Hydrothermal SiO2@CDs 0.5 μm UV/blue 63
Citric acid, cysteine Microwave pyrolysis CDs/SiO2 34 nm UV/blue 64
N-(β-2-Amino-ethyl)-γ-
aminopropyltrimethoxysilane, citric acid
Pyrolysis CDs/SiO2 141 nm UV/blue, blue/green, green/red 65
Pomegranate peel Hydrothermal CDs/TiO2 6 μm White/— 66
Citric acid, glycine Hydrothermal CDs/ZIF-8 0.4 μm UV/blue, blue/green, green/yellow 67
Safranine T Hydrothermal CDs/B2O3 2 nm Vis/blue 68
Sodium citrate, (3-aminopropyl)
triethoxysilane
Hydrothermal CDs/SiO2 0.1 μm UV/blue 69
Citrate, thiourea, (3-aminopropyl)
triethoxysilane
Solvothermal CDs/SiO2 10.86 nm UV/green 70
Rice husk, ethylenediamine Sol-gel CDs/SiO2 3.75 nm UV/green 71
图6 (a)R-CDs/淀粉复合粉末制备及其显现皮脂手印示意图;(b)玻璃(左)、纸张(中)和塑料(右)表面显出手印在绿光下的荧光图像,彩色圆圈标出了8个细节特征;(c)纸张表面显出手印图像处理:依次为彩色图像、灰度图像、归一化图像和二值图像[53]
Fig. 6 (a) Schematic diagram of the preparation of R-CDs/starch composite powder and its application in the development of sebaceous fingerprints; (b) FL images captured under green light of developed fingerprints on glass (left), paper (middle) and plastic (right); eight details are marked with color circles; (c) image processing of a developed fingerprint on paper: color image, grayscale image, normalized image and binary image[53]. Copyright 2020, American Chemical Society
图7 G-CDs/MMT复合粉末制备及其显现汗液手印示意图[58]
Fig. 7 Schematic diagram of the preparation of G-CDs/MMT composite powder and its application in the development of eccrine fingerprints[58]
图8 (a)SiO2@CDs的TEM照片;(b)分散在溶液中的SiO2@CDs在不同激发波长下的荧光发射光谱;(c)SiO2@CDs显出手印在不同波长激发光下的荧光图像[62]
Fig. 8 (a) TEM image of SiO2@CDs; (b) FL emission spectra of SiO2@CDs dispersed in solution measured under different excitation wavelengths; (c) FL images of a developed fingerprint captured under different excitation wavelengths[62]. Copyright 2016, The Royal Society of Chemistry
图9 (a)CDs/B2O3复合粉末制备示意图;(b)移除可见光前后CDs/B2O3复合粉末照片;(c)玻璃(左)、称量纸(中)和陶瓷杯(右)表面显出手印移除可见光后的长余辉发光图像[68]
Fig. 9 (a) Schematic diagram of the preparation of CDs/B2O3 composite powder; (b) images of CDs/B2O3 composite powder captured before and after removing visible light; (c) long afterglow images of developed fingerprints on glass (left), weighing paper (middle) and porcelain cup (right) captured after removing visible light[68]. Copyright 2021, American Chemical Society
[1]
Hazarika P, Russell D A. Angew. Chem. Int. Ed., 2012, 51(15): 3524.

doi: 10.1002/anie.201104313     pmid: 22461202
[2]
Yuan C J, Li M, Wang M, Cao H J, Lin T C. Electrochimica Acta, 2021, 390: 138798.

doi: 10.1016/j.electacta.2021.138798     URL    
[3]
Chávez D, Garcia C R, Oliva J, Diaz-Torres L A. Ceram. Int., 2021, 47(1): 10.

doi: 10.1016/j.ceramint.2020.08.259     URL    
[4]
Wang M, Li M, Yu A Y, Zhu Y, Yang M Y, Mao C B. Adv. Funct. Mater., 2017, 27(14): 1606243.

doi: 10.1002/adfm.201606243     URL    
[5]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h     URL    
[6]
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115(11): 4744.

doi: 10.1021/cr500304f     pmid: 26012488
[7]
Wang Y F, Hu A G. J. Mater. Chem. C, 2014, 2(34): 6921.

doi: 10.1039/C4TC00988F     URL    
[8]
Ma Y, Liu M, Guo R, Li B X. Sci. Sin. Chimica, 2021, 51(1): 41.
( 马玥, 刘梅, 郭荣, 李保新. 中国科学: 化学, 2021, 51(1): 41.).
[9]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angew. Chem. Int. Ed., 2012, 51(49): 12215.

doi: 10.1002/anie.201206791     URL    
[10]
Lou Q, Qu S N, Jing P T, Ji W Y, Li D, Cao J S, Zhang H, Liu L, Zhao J L, Shen D Z. Adv. Mater., 2015, 27(8): 1389.

doi: 10.1002/adma.201403635     URL    
[11]
Shabashini A, Panja S K, Nandi G C. Chem. Asian J., 2021, 16(9): 1057.

doi: 10.1002/asia.202100119     URL    
[12]
Liu J, Zhang X R, Xiong H M. Chin. J. Lumin., 2021, 42(8): 1095.
( 刘俊, 张熙荣, 熊焕明. 发光学报, 2021, 42(8): 1095.).
[13]
Verhagen A, Kelarakis A. Nanomaterials, 2020, 10(8): 1535.

doi: 10.3390/nano10081535     URL    
[14]
Arshad F, Pal A, Sk M P. ECS J. Solid State Sci. Technol., 2021, 10(2): 021001.

doi: 10.1149/2162-8777/abdfb8     URL    
[15]
Xu A L, Wang G, Li Y Q, Dong H, Yang S W, He P, Ding G Q. Small, 2020, 16(48): 2004621.

doi: 10.1002/smll.202004621     URL    
[16]
Liu Y S, Li W, Wu P, Liu S X. Prog. Chem., 2018, 30(4): 3490.
( 刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30(4): 349.).

doi: 10.7536/PC170808    
[17]
Thongsai N, Nagae Y, Hirai T, Takahara A, Uchiyama T, Kamitani K, Paoprasert P. Sens. Actuat. B Chem., 2017, 253: 1026.

doi: 10.1016/j.snb.2017.07.051     URL    
[18]
Zhao D, Ma W T, Xiao X C. Nanomaterials, 2018, 8(8): 612.

doi: 10.3390/nano8080612     URL    
[19]
Li J, Ma S Y, Xiao X C, Zhao D. J. Nanomater., 2019, 2019: 8628354.
[20]
Tang M Y, Ren G J, Zhu B Y, Yu L Y, Liu X D, Chai F, Wu H B, Wang C G. Anal. Methods, 2019, 11(15): 2072.

doi: 10.1039/C9AY00178F     URL    
[21]
Jiang B P, Yu Y X, Guo X L, Ding Z Y, Zhou B, Liang H, Shen X C. Carbon, 2018, 128: 12.

doi: 10.1016/j.carbon.2017.11.070     URL    
[22]
Dilag J, Kobus H, Yu Y, Gibson C T, Ellis A V. Polym. Int., 2015, 64(7): 884.

doi: 10.1002/pi.4861     URL    
[23]
Chen J, Wei J S, Zhang P, Niu X Q, Zhao W, Zhu Z Y, Ding H, Xiong H M. ACS Appl. Mater. Interfaces, 2017, 9(22): 18429.

doi: 10.1021/acsami.7b03917     URL    
[24]
Thirumalaivasan N, Wu S P. ACS Appl. Bio Mater., 2020, 3(9): 6439.

doi: 10.1021/acsabm.0c00868     pmid: 35021775
[25]
Li L, Shi L H, Zhang Y, Zhang G M, Zhang C H, Dong C, Yu H Z, Shuang S M. Talanta, 2019, 196: 109.

doi: 10.1016/j.talanta.2018.12.034     URL    
[26]
Wang C F, Cheng R, Ji W Q, Ma K Z, Ling L T, Chen S. ACS Appl. Mater. Interfaces, 2018, 10(45): 39205.

doi: 10.1021/acsami.8b13545     URL    
[27]
Li Q, Guo Z W, Zhao X Y, Zhang T Y, Chen J, Wei Y. Nanotechnology, 2020, 31(33): 335501.

doi: 10.1088/1361-6528/ab8f4b     URL    
[28]
Eskalen H, Çeşme M, Kerli S, Özğan Ş. J. Chem. Res., 2021, 45: 428.

doi: 10.1177/1747519820953823     URL    
[29]
Liu Y, Long K Y, Mi H B, Cha R T, Jiang X Y. Nanoscale Horiz., 2019, 4(4): 953.

doi: 10.1039/C8NH00494C     URL    
[30]
Wang J, Yang Y, Liu X. Mater. Adv., 2020, 1: 3122.

doi: 10.1039/D0MA00632G     URL    
[31]
Huang R, Peng A. Sci. Sin. Chimica, 2019, 49(12): 1454.
( 黄锐, 彭安. 中国科学: 化学, 2019, 49(12): 1454.).
[32]
Meng W. RSC Adv., 2016, 6(43): 36264.

doi: 10.1039/C6RA04573A     URL    
[33]
Wang Y F, Yang R Q, Wang Y J, Shi Z X, Liu J J. Forensic Sci. Int., 2009, 185(1/3): 96.

doi: 10.1016/j.forsciint.2008.12.021     URL    
[34]
Cai K Y, Yang R Q, Wang Y J, Yu X J, Liu J J. Forensic Sci. Int., 2013, 226(1/3): 240.

doi: 10.1016/j.forsciint.2013.01.035     URL    
[35]
Olszowska I, Leśniewski A, Kelm A, Pieta I S, Siejca A, Niedziółka-Jönsson J. Methods Appl. Fluoresc., 2020, 8(2): 025001.

doi: 10.1088/2050-6120/ab6f24     URL    
[36]
Mampallil D, Eral H B. Adv. Colloid Interface Sci., 2018, 252: 38.

doi: 10.1016/j.cis.2017.12.008     URL    
[37]
Wang J L, Wang Y L, Zheng J X, Yu S P, Yang Y Z, Liu X G. Prog. Chem., 2018, 30(8): 1186.
( 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 化学进展, 2018, 30(8): 1186.).

doi: 10.7536/PC180103    
[38]
Bandi R, Kannikanti H G, dadigala R, Gangapuram B R, Vaidya J R, Guttena V. Opt. Mater., 2020, 109: 110349.

doi: 10.1016/j.optmat.2020.110349     URL    
[39]
Wang G P, Zhang P, Wang G Y. Chem. J. Chin. Univ., 2019, 40(12): 2583.
( 王桂萍, 张平, 王桂燕. 高等学校化学学报, 2019, 40(12): 2583.).
[40]
Niu X Q, Song T B, Xiong H M. Chin. Chem. Lett., 2021, 32(6): 1953.

doi: 10.1016/j.cclet.2021.01.006     URL    
[41]
Wang C, Zhou J D, Lu L L, Song Q J. Part. Part. Syst. Charact., 2018, 35(3): 1700387.

doi: 10.1002/ppsc.201700387     URL    
[42]
Wang H J, Yu T T, Chen H L, Nan W B, Xie L Q, Zhang Q Q. Dyes Pigments, 2018, 159: 245.

doi: 10.1016/j.dyepig.2018.06.039     URL    
[43]
Wang H J, Hou W Y, Yu T T, Chen H L, Zhang Q Q. Dyes Pigments, 2019, 170: 107623.

doi: 10.1016/j.dyepig.2019.107623     URL    
[44]
Wang H J, Hou W Y, Kang J, Zhai X Y, Chen H L, Hao Y W, Wan G Y. Dalton Trans., 2021, 50(35): 12188.

doi: 10.1039/D1DT01510A     URL    
[45]
Bahadur R, Kumawat M K, Thakur M, Srivastava R. J. Lumin., 2019, 208: 428.

doi: 10.1016/j.jlumin.2018.12.049    
[46]
Wang Y P, Ju W, Chen J J, Liu Z Y, Wang J S. ChemistrySelect, 2020, 5(29): 8915.

doi: 10.1002/slct.202000712     URL    
[47]
Milenkovic I, Algarra M, Alcoholado C, Cifuentes M, Lázaro-Martínez J M, Rodríguez-Castellón E, Mutavdžić D, Radotić K, Bandosz T J. Carbon, 2019, 144: 791.

doi: 10.1016/j.carbon.2018.12.102    
[48]
Pacquiao M R, de Luna M D G, Thongsai N, Kladsomboon S, Paoprasert P. Appl. Surf. Sci., 2018, 453: 192.

doi: 10.1016/j.apsusc.2018.04.199     URL    
[49]
Ren G J, Meng Y X, Zhang Q, Tang M Y, Zhu B Y, Chai F, Wang C G, Su Z M. New J. Chem., 2018, 42(9): 6824.

doi: 10.1039/C7NJ05170K     URL    
[50]
Li H R, Guo X J, Liu J, Li F. Opt. Mater., 2016, 60: 404.

doi: 10.1016/j.optmat.2016.08.010     URL    
[51]
Feng R Q, Yuan Z Y, Ren T Z. Methods Appl. Fluoresc., 2019, 7(3): 035001.

doi: 10.1088/2050-6120/ab11a3     URL    
[52]
Li F, Wang X, Liu W, Wang L Q, Wang G Y. Opt. Mater., 2018, 86: 79.

doi: 10.1016/j.optmat.2018.09.040     URL    
[53]
Dong X Y, Niu X Q, Zhang Z Y, Wei J S, Xiong H M. ACS Appl. Mater. Interfaces, 2020, 12(26): 29549.
[54]
Ding L F, Peng D, Wang R N, Li Q. J. Alloys Compd., 2021, 856: 158160.

doi: 10.1016/j.jallcom.2020.158160     URL    
[55]
Prabakaran E, Pillay K. Arab. J. Chem., 2020, 13(2): 3817.

doi: 10.1016/j.arabjc.2019.01.004     URL    
[56]
Fouda-Mbanga B G, Prabakaran E, Pillay K. Arab. J. Chem., 2020, 13(8): 6762.

doi: 10.1016/j.arabjc.2020.06.030     URL    
[57]
Yu Y L, Yan L. Bull. Chem. Soc. Jpn., 2017, 90(11): 1217.

doi: 10.1246/bcsj.20170182     URL    
[58]
Zhai Y C, Shen F Z, Zhang X T, Jing P T, Li D, Yang X D, Zhou D, Xu X W, Qu S N. J. Colloid Interface Sci., 2019, 554: 344.

doi: 10.1016/j.jcis.2019.07.022     URL    
[59]
Fernandes D, Krysmann M J, Kelarakis A. Chem. Commun., 2015, 51(23): 4902.

doi: 10.1039/C5CC00468C     URL    
[60]
Sekar A, Vadivel R, Munuswamy R G, Yadav R. New J. Chem., 2021, 45(37): 17447.

doi: 10.1039/D1NJ03901F     URL    
[61]
Kathiravan A, Gowri A, Srinivasan V, Smith T A, Ashokkumar M, Asha Jhonsi M. Anal., 2020, 145(13): 4532.

doi: 10.1039/D0AN00750A     URL    
[62]
Fernandes D, Krysmann M J, Kelarakis A. Chem. Commun., 2016, 52(53): 8294.

doi: 10.1039/C6CC02556K     URL    
[63]
Peng D, Liu X, Huang M J, Wang D, Liu R L. Dalton Trans., 2018, 47(16): 5823.

doi: 10.1039/c8dt00579f     pmid: 29645041
[64]
Chen H Y, Liu L. Nano, 2019, 14(6): 1950068.

doi: 10.1142/S1793292019500681     URL    
[65]
Zhao Y B, Ma Y J, Song D, Liu Y, Luo Y P, Lin S, Liu C Y. Anal. Methods, 2017, 9(33): 4770.

doi: 10.1039/C7AY01316G     URL    
[66]
Amith Yadav H J, Eraiah B, Basavaraj R B, Nagabhushana H, Darshan G P, Sharma S C, Prasad B D, Nithya R, Shanthi S. J. Alloys Compd., 2018, 742: 1006.

doi: 10.1016/j.jallcom.2017.12.251     URL    
[67]
Li G M, Wang X, Zhang J L. CrystEngComm, 2018, 20(34): 5056.

doi: 10.1039/C8CE00955D     URL    
[68]
He W, Sun X Y, Cao X G. ACS Sustainable Chem. Eng., 2021, 9(12): 4477.

doi: 10.1021/acssuschemeng.0c08652     URL    
[69]
Li F, Li H R, Cui T F. Opt. Mater., 2017, 73: 459.

doi: 10.1016/j.optmat.2017.09.004     URL    
[70]
Qin Z X, Wen M, Bai J J, Cui J C, Miao R Z, Zhang X W, Zhang Q M, Zhang R, Du X J. New J. Chem., 2021, 45(26): 11596.

doi: 10.1039/D1NJ01742J     URL    
[71]
Sun Y Q, Liu J K, Pang X L, Zhang X J, Zhuang J L, Zhang H R, Hu C F, Zheng M T, Lei B F, Liu Y L. J. Mater. Chem. C, 2020, 8(17): 5744.

doi: 10.1039/D0TC00507J     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[4] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 李世嘉, 庞尔楠, 郝彩红, 蔡婷婷, 胡胜亮. 固态荧光碳点的制备[J]. 化学进展, 2020, 32(5): 548-561.
[7] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[8] 唐志姣, 李攻科*, 胡玉玲*. 氮掺杂碳点的制备及在定量分析中的应用[J]. 化学进展, 2016, 28(10): 1455-1461.
[9] 颜范勇, 邹宇, 王猛, 代林枫, 周旭光, 陈莉. 荧光碳点的制备及应用[J]. 化学进展, 2014, 26(01): 61-74.
[10] 刘杰, 江漫, 梅咏梅, 吴占超*, 匡少平. 白光发光二极管用单一基质白光荧光粉[J]. 化学进展, 2013, 25(12): 2068-2079.
[11] 方云霞, 方晓明*, 张正国. 基于纳米ZnO的白光LED[J]. 化学进展, 2012, 24(08): 1477-1483.
[12] 张其土, 张乐, 韩朋德, 陈雁, 杨浩, 王丽熙. 白光LED用光转换无机荧光粉[J]. 化学进展, 2011, 23(6): 1108-1122.
[13] 朱崇强 杨春晖 孙亮. 非线性光学晶体CdGeAs2点缺陷的研究*[J]. 化学进展, 2010, 22(0203): 315-321.
[14] 李海艳,李强. 有机染料-层状硅酸盐光活性纳米复合材料*[J]. 化学进展, 2003, 15(02): 135-.