English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 61-74 DOI: 10.7536/PC130643 前一篇   后一篇

• 综述与评论 •

荧光碳点的制备及应用

颜范勇*1, 邹宇1, 王猛2, 代林枫1, 周旭光1, 陈莉2   

  1. 1. 天津工业大学环境与化学工程学院 中空纤维膜材料与膜过程国家重点实验室 天津 300387;
    2. 天津工业大学材料科学与工程学院 改性与功能纤维天津市重点实验室 天津 300387
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 颜范勇,e-mail:yanfanyong@tjpu.edu.cn E-mail:yanfanyong@tjpu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21174103)资助

Synthesis and Application of the Fluorescent Carbon Dots

Yan Fanyong*1, Zou Yu1, Wang Meng2, Dai Linfeng1, Zhou Xuguang1, Chen Li2   

  1. 1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21174103)

荧光碳点是继富勒烯、碳纳米管及石墨烯之后最热门的碳纳米材料之一。这种纳米材料克服了传统量子点的某些缺点,不仅具有优良的光学性能与小尺寸特性,而且具有良好的生物相容性,易于实现表面功能化,在生化传感、成像分析、环境检测、光催化技术及药物载体等领域具有很好的应用潜力。本文就近年来人们对荧光碳点的研究进行了综述,简述了碳点的特性,重点介绍了荧光碳点应用的最新进展,对碳点发展过程中尚待解决的问题进行总结并对未来发展方向进行了展望。

Carbon dots are the most popular nanomaterials in recent years among the nanocarbon family, including fullerene, the carbon nanotube and graphene. This kind of nanomaterial has successfully overcome some defects of traditional semiconductor quantum dots. It is highly evaluated not only for the excellent optical performance and small size effect, but also the great biocompatibility and ease to achieve surface functionalization. Carbon dots can be widely used in the field of biochemical sensing, fluorescent probes, environmental testing, photocatalytic technology, drug carriers and so on. In this review, the progress made in the field of carbon dots in recent years, especially in latest developments of applications are reviewed, the characteristics of carbon dots are outlined, the problems remaining to be solved are summarized and the further advances are prospected.

Contents
1 Introduction
2 Properties of the carbon dots
2.1 Optical property
2.2 Low toxicity and biocompatibility
3 Preparation of carbon dots
4 Application of carbon dots
4.1 Detection probes
4.2 Bioimaging
4.3 Light-emitting element
4.4 Photocatalysis
4.5 Drug carriersis
5 Conclusions and perspectives

中图分类号: 

()

[1] Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126: 12736.
[2] Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P J G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129: 11318.
[3] Zhao H X, Liu L Q, Liu Z D, Wang Y, Zhao X J, Huang C Z. Chem. Commun., 2011, 47: 2604.
[4] Zhang C M, Lin J. Chem. Soc. Rev., 2012, 41: 7938.
[5] Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev., 2013, DOI: 10.1039/c3cs35429f.
[6] 胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展(Progress in Chemistry), 2010, 22(2/3): 345.
[7] Luo P J G, Sahu S, Yang S T, Sonkar S K, Wang J P, Wang H F, LeCroy G E, Cao L, Sun Y P. J. Mater. Chem. B, 2013, 1: 2116.
[8] Esteves da Silva J C G, Gonalves H M R. Trac-trend. Anal. Chem., 2011, 30: 1327.
[9] Li J, Guo S J, Wang E K. RSC Adv., 2012, 2: 3579.
[10] Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22: 24230.
[11] Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F, Kang Z H. Dalton Trans., 2012, 41: 9526.
[12] Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19: 484.
[13] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Adv. Mater., 2011, 23: 5801.
[14] Bae Y, Myung N, Bard A J. Nano Lett., 2004, 4: 1153.
[15] Ding Z F, Quinn B M, Haram S K, Pell L E, Korgel B A, Bard A J. Science, 2002, 296: 1293.
[16] Jiang H, Ju H X. Anal. Chem., 2007, 79: 6690.
[17] Liu H P, Ye T, Mao C D. Angew. Chem. Int. Ed., 2007, 46: 6473.
[18] Lin L P, Wang X X, Lin S Q, Zhang L H, Lin C Q, Li Z M, Liu J M. Spectrochim. Acta A, 2012, 95: 555.
[19] Shen R, Song K, Liu H R, Li Y S, Liu H W. J. Phys. Chem. C, 2012, 116: 15826.
[20] Xu J, Sahu S, Cao L, Bunker C E, Peng G, Liu Y M, Shiral Fernando K A, Wang P, Guliants E A, Meziani M J, Qian H J, Sun Y P. Langmuir, 2012, 28: 16141.
[21] Zhu H, Wang X L, Li Y L, Wang Z J, Yang F, Yang X R. Chem. Commun., 2009, 34: 5118.
[22] Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B. J. Am. Chem. Soc., 2009, 131: 4564.
[23] Lin P, Chen J W, Chang L W, Wu J P, Redding L, Chang H, Yeh T K, Yang C S, Tsai M H, Wang H J, Kuo Y C, Yang R S H. Environ. Sci. Technol., 2008, 42: 6264.
[24] Gey J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts M F, Nemery B, Hoet P H M. Environ. Health. Persp., 2008, 116: 1607.
[25] Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726.
[26] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128: 7756.
[27] Sun Y P, Wang X, Lu F S, Cao L, Meziani M J, Luo P G, Gu L G. J. Phys. Chem. C, 2008, 112: 18295.
[28] Zhou J G, Booker C, Li R Y, Zhou X T, Sham T K, Sun X L, Ding Z F. J. Am. Chem. Soc., 2007, 129: 744.
[29] Luo P H, Li C, Shi G Q. Phys. Chem. Chem. Phys., 2012, 14: 7360.
[30] Ray S C, Saha A, Jana N R, Sarkar R. J. Phys. Chem. C, 2009, 113: 18546.
[31] Qiao Z A, Wang Y F, Gao Y, Li H W, Dai T Y, Liu Y L, Huo Q S. Chem. Commun., 2010, 46: 8812.
[32] Zheng H Z, Wang Q L, Long Y J, Zhang H J, Huang X X, Zhu R. Chem. Commun., 2011, 47: 10650.
[33] Li H T, He X D, Liu Y, Hang Yu, Kang Z H, Lee S T. Mater. Res. Bull., 2011, 46: 147.
[34] Wang F, Xie Z, Zhang H, Liu C Y, Zhang Y G. Adv. Funct. Mater., 2011, 21: 1027.
[35] Wang F, Pang S Q, Wang L, Li Q, Kreiter M, Liu C Y. Chem. Mater., 2010, 22: 4528.
[36] Zong J, Zhu Y H, Yang X L, Shen J H, Li C Z. Chem. Commun., 2011, 47: 764.
[37] Dong Y Q, Wang R X, Li H, Shao J W, Chi Y W, Lin X M, Chen G N. Carbon, 2012, 50: 2810.
[38] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52: 3953.
[39] Peng H, Travas-Sejdic J. Chem. Mater., 2009, 21: 5563.
[40] Han B F, Wang W X, Wu H Y, Fang F, Wang N Z, Zhang X J, Xu S K. Colloid. Surface. B, 2012, 100: 209.
[41] Xu Y, Wu M, Liu Y, Feng X Z, Yin X B, He X W, Zhang Y K. Chem. Eur. J., 2013, 19: 2276.
[42] Wang X H, Qu K G, Xu B L, Ren J S, Qu X G. J. Mater. Chem., 2011, 21: 2445.
[43] Jaiswal A, Ghosh S S, Chattopadhyay A. Chem. Commun., 2012, 48: 407.
[44] Shen L M, Zhang L P, Chen M L, Chen X W, Wang J H. Carbon, 2013, 55: 343.
[45] Lin Z, Xue W, Chen H, Lin J M. Chem. Commun., 2012, 48: 1051.
[46] Li H T, He X D, Liu Y, Huang H, Lian S Y, Lee S T, Kang Z H. Carbon, 2011, 49: 605.
[47] Li M, Gou H L, Al-Ogaidi I, Wu N Q. ACS Sustainable Chem. Eng., 2013, 1: 713.
[48] Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24: 2037.
[49] Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubí-Robles M, Fernández B, Ruedas-Rama M J, Megia-Fernández A, Lapresta-Fernández A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey L F. Chem. Commun., 2013, 49: 1103.
[50] Liu J M, Lin L P, Wang X X, Lin S Q, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2012, 137: 2637.
[51] Zhu A W, Qu Q, Shao X L, Kong B, Tian Y. Angew. Chem., 2012, 124: 7297.
[52] Shao X L, Gu H, Wang Z, Chai X L, Tian Y, Shi G Y. Anal. Chem., 2013, 85: 418.
[53] Wei W, Xua C, Ren J, Xu B, Qu X. Chem. Commun., 2012, 48: 1284.
[54] Liu L Q, Li Y F, Zhan L, Liu Y, Huang C Z. Sci. China Chem., 2011, 54: 1342.
[55] Liu Y, Liu C Y, Zhang Z Y. Appl. Surf. Sci., 2012, 263: 481.
[56] Gonalves H M R, Duarte A J, Esteves da Silva J C G. Biosens. Bioelectron., 2010, 26: 1302.
[57] Qu K G, Wang J S, Ren J S, Qu X G. Chem. Eur. J., 2013, 19: 7243.
[58] Lin Z, Xue W, Chen H, Lin J M. Anal. Chem., 2011, 83: 8245.
[59] Zhao H X, Liu L Q, Liu Z D, Wang Y, Zhao X J, Huang C Z. Chem. Commun., 2011, 47: 2604.
[60] Liu J M, Lin L P, Wang X X, Jiao L, Cui M L, Jiang S L, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2013, 138: 278.
[61] Yu C M, Li X Z, Zeng F, Zheng F Y, Wu S Z. Chem. Commun., 2013, 49: 403.
[62] Barman S, Sadhukhan M. J. Mater. Chem., 2012, 22: 21832.
[63] Li J Z, Wang N Y, Tran T T, Huang C A, Chen L, Yuan L J, Zhou L P, Shen R, Cai Q Y. Analyst, 2013, 138: 2038.
[64] Xu B L, Zhao C Q, Wei W L, Ren J S, Miyoshi D, Sugimoto N, Qu X G. Analyst, 2012, 137: 5483.
[65] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Methods, 2008, 5: 763.
[66] Weng J, Ren J. Curr. Med. Chem., 2006, 13: 897.
[67] Mao Y, Bao Y, Han D X, Li F H, Niu L. Biosens. Bioelectron., 2012, 38: 55.
[68] Wang C I, Periasamy A P, Chang H T. Anal. Chem., 2013, 85: 3263.
[69] Anilkumar P, Cao L, Yu J J, Tackett Ⅱ K N, Wang P, Meziani M J, Sun Y P. Small, 2013, 9: 545.
[70] Lin F, Pei D J, He W N, Huang Z X, Huang Y J, Guo X Q. J. Mater. Chem., 2012, 22: 11801.
[71] Hötzer B, Medintz I L, Hildebrandt N. Small, 2012, 8: 2297.
[72] Liu R L, Wu D Q, Liu S H, Koynov K, Knoll W, Li Q. Angew. Chem. Int. Ed., 2009, 48: 4598.
[73] Li Q, Ohulchanskyy T Y, Liu R L, Koynov K, Wu D Q, Best A, Kumar R, Bonoiu A, Prasad P N. J. Phys. Chem. C, 2010, 114: 12062.
[74] Liu C J, Zhang P, Tian F, Li W C, Li F, Liu W G. J. Mater. Chem., 2011, 21: 13163.
[75] Bourlinos A B, Bakandritsos A, Kouloumpis A, Gournis D, Krysmann M, Giannelis E P, Polakova K, Safarova K, Hola K, Zboril R. J. Mater. Chem., 2012, 22: 23327.
[76] Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48: 8835.
[77] Yang S T, Cao L, Luo P J G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131: 11308.
[78] Yang S T, Wang X, Wang H F, Lu F S, Luo P J G, Cao L, Meziani M J, Liu J H, Liu Y F, Chen M, Huang Y P, Sun Y P. J. Phys. Chem. C, 2009, 113: 18110.
[79] Huang X L, Zhang F, Zhu L, Choi K Y, Guo N, Guo J X, Tackett K, Anilkumar P, Liu G, Quan Q M, Choi H S, Niu G, Sun Y P, Lee S, Chen X Y. ACS Nano, DOI: 10.1021/nn401911k.
[80] Shen J H, Zhu Y H, Chen C, Yang X L, Li C Z. Chem. Commun., 2011, 47: 2580.
[81] Jia X F, Li J, Wang E K. Nanoscale, 2012, 4: 5572.
[82] Zhang Y Q, Ma D K, Zhuang Y, Zhang X, Chen W, Hong L L, Yan Q X, Yu K, Huang S M. J. Mater. Chem., 2012, 22: 16714.
[83] Huang P, Lin J, Wang X S, Wang Z, Zhang C L, He M, Wang K, Chen F, Li Z M, Shen G X, Cui D X, Chen X Y. Adv. Mater., 2012, 24: 5104.
[84] Guo X, Wang C F, Yu Z Y, Chen L, Chen S. Chem. Commun., 2012, 48: 2692.
[85] Wang F, Chen Y H, Liu C Y, Ma D G. Chem. Commun., 2011, 47: 3502.
[86] Zhang X, Ming H, Liu R H, Han X, Kang Z H, Liu Y, Zhang Y L. Mater. Res. Bull., 2013, 48: 790.
[87] Fan Y Q, Cheng H H, Zhou C, Xie X J, Liu Y, Dai L M, Zhang J, Qu L T. Nanoscale, 2012, 4: 1776.
[88] Zhang P, Li W C, Zhai X Y, Liu C J, Dai L M, Liu W G. Chem. Commun., 2012, 48: 10431.
[89] Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angew. Chem. Int. Ed., 2012, 51: 1.
[90] Wang J, Wang C F, Chen S. Angew. Chem. Int. Ed., 2012, 51: 9297.
[91] Ma Z, Zhang Y L, Wang L, Ming H, Li H T, Zhang X, Wang F, Liu Y, Kang Z H, Lee S T. ACS Appl. Mater. Inter., 2013, 5: 5080.
[92] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49: 4430.
[93] Li H T, Liu R H, Liu Y, Huang H, Yu H, Ming H, Lian S Y, Lee S T, Kang Z H. J. Mater. Chem., 2012, 22: 17470.
[94] Li H T, Liu R H, Lian S Y, Yang Liu, Huang H, Kang Z H. Nanoscale, 2013, 5: 3289.
[95] Zhang H C, Huang H, Ming H, Li H T, Zhang L L, Liu Y, Kang Z H. J. Mater. Chem., 2012, 22: 10501.
[96] Tang D, Zhang H C, Huang H, Liu R H, Han Y Z, Liu Y, Tong C Y, Kang Z H. Dalton Trans., 2013, 42: 6285.
[97] Li H P, Zhu Y H, Cao H M, Yang X L, Li C Z. Mater. Res. Bull., 2013, 48: 232.
[98] Zhang X, Wang F, Huang H, Li H T, Han X, Liu Y, Kang Z H. Nanoscale, 2013, 5: 2274.
[99] Lai C W, Hsiao Y H, Peng Y K, Chou P T. J. Mater. Chem., 2012, 22: 14403.
[100] Zhou L, Li Z H, Liu Z, Ren J S, Qu X G. Langmuir, 2013, 29: 6396.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[7] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[10] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[11] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[12] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[13] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[14] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[15] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
阅读次数
全文


摘要

荧光碳点的制备及应用