English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2138-2149 DOI: 10.7536/PC201219 前一篇   后一篇

• 综述 •

基于过硫酸盐活化的微界面电子转移氧化技术

冯勇1,2,*(), 李谕1,2, 应光国1,2   

  1. 1 华南师范大学环境研究院 广东省化学品污染与环境安全重点实验室 环境理论化学教育部重点实验室 广州 510006
    2 华南师范大学环境学院 广州 510006
  • 收稿日期:2020-12-11 修回日期:2021-01-05 出版日期:2021-11-20 发布日期:2021-03-04
  • 通讯作者: 冯勇
  • 基金资助:
    国家自然科学基金项目(42077340); 国家自然科学基金项目(52000080); 广东省基础与应用基础研究基金(2019A1515110988)

Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation

Yong Feng1,2(), Yu Li1,2, Guangguo Ying1,2   

  1. 1 SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University,Guangzhou 510006, China
    2 School of Environment, South China Normal University, Guangzhou 510006, China
  • Received:2020-12-11 Revised:2021-01-05 Online:2021-11-20 Published:2021-03-04
  • Contact: Yong Feng
  • Supported by:
    National Natural Science Foundation of China(42077340); National Natural Science Foundation of China(52000080); Guangdong Basic and Applied Basic Research Foundation(2019A1515110988)

基于过硫酸盐活化的高级氧化技术是当前环境领域的研究热点。然而,环境中广泛存在的基质严重地制约了这一技术的实际应用。最新研究表明,在某些催化剂的作用下,过硫酸盐能够以电子转移的非自由基机制氧化降解污染物,而催化剂主要起电子转移媒介的作用。这一技术不易受水环境中氯离子、碳酸氢根离子等常见阴离子和天然有机物的影响,对目标污染物的氧化去除具有较高的选择性。同时,实验现象初步显示这一技术有望实现污染物的降解而无须使其与氧化剂直接接触,从而能够避免氧化剂和卤素阴离子的作用。本文着重综述了常见电子媒介的类型、电子转移机制的表征方法和常见基质对电子转移过程的影响,提出了这一技术存在的问题并对其应用前景进行了展望。

Advanced oxidation processes based on persulfate activation have attracted increasing attention in the field of environmental remediation. However, the ubiquitous presence of radical scavengers in the environment limits the practical application of this technology. The latest publications show that the persulfate, under the activation of certain catalysts, can oxidize contaminants through the non-radical mechanism of electron transfer, and the catalyst mainly serves as an electron shuttle. This technology is not easily affected by common anions, such as chloride ions and bicarbonate ions, and natural organic matters and has high selectivity for the oxidation of target contaminants. Meanwhile, this technology may degrade pollutants without the need of direct contact between oxidants and pollutants, thereby avoiding the generation of toxic halogenated products due to the direct interaction between halogen ions and persulfate. This review mainly summarizes the types of common electron shuttles, the characterization methods of electron transfer processes, and the effects of common water components. Finally, the problems and application potential of this technology are proposed.

Contents:

1 Introduction

2 Mechanism and categories of interfacial electron transfer oxidation

2.1 Development and mechanism of interfacial electron transfer

2.2 Types of electron shuttles

2.3 Advantages and disadvantages of different electron shuttles

3 Identification of electron transfer mechanism

3.1 Radical measurements

3.2 Involvement of nonradical species

3.3 Electrochemical tests

3.4 Decomposition of persulfates

3.5 Theoretical calculation

4 Influencing factors of interfacial electron transfer

4.1 Factors influencing the catalytic reactivity

4.2 Factors influencing the adsorption reactivity

5 Effects of common water components

5.1 Chloride ions

5.2 Carbonate and bicarbonate ions

5.3 Natural organic matters

5.4 Treatment of wastewate by electron transfer

6 Applications of interfacial electron transfer

7 Conclusions and outlook

()
表1 过硫酸盐的物理化学特性
Table 1 Physicochemical properties of persulfates
图1 催化过硫酸盐界面电子转移氧化降解有机污染物的发展历程和机制
Fig. 1 The development and mechanism of degradation of organic contaminants by catalyzed persulfates via interfacial electron transfer
表2 活化过硫酸盐电子转移氧化去除有机污染物
Table 2 Oxidative removal of organic contaminants by activated persulfates via electron-transfer mechanism
图2 催化过硫酸盐电子转移机制的鉴定流程
Fig. 2 Identification of electron transfer mechanism during the activation of persulfate
图3 水中常见基质影响高级氧化反应的机理示意图
Fig. 3 Effects of common water components on the advanced oxidation processes
表3 水中常见基质对电子转移氧化有机物污染物的影响
Table 3 Effects of common water components on the degradation of organic contaminants via electron-transfer mechanism
表4 电子转移技术净化(模拟)实际废水
Table 4 Treatment of synthetic/practical wastewater by electron transfer-mediated technologies
图4 基于(a)CNT膜和(b)盐桥的原电池氧化降解装置示意图[12,13]
Fig. 4 Galvanic cell oxidation device based on(a) CNT membrane and(b) salt bridge
[1]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.

pmid: 14594393
[2]
Zhou Z, Liu X T, Sun K, Lin C Y, Ma J, He M C, Ouyang W. Chem. Eng. J., 2019, 372: 836.

doi: 10.1016/j.cej.2019.04.213    
[3]
Long A H, Lei Y, Zhang H. Prog. Chem., 2014, 26(5): 898.
(龙安华, 雷洋, 张晖. 化学进展, 2014, 26(5): 898).
[4]
Hu P, Long M. Appl. Catal. B., 2016, 181: 103.
[5]
Buxton G V, Greenstock C L, Helman W P, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(2): 513.

doi: 10.1063/1.555805     URL    
[6]
Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(3): 1027.

doi: 10.1063/1.555808     URL    
[7]
Wojnárovits L, Takács E. Chemosphere, 2019, 220: 1014.

doi: 10.1016/j.chemosphere.2018.12.156     URL    
[8]
Luo X, Wei X X, Chen J W, Xie Q, Yang X H, Peijnenburg W J G M. Water Res., 2019, 166: 115083.
[9]
Ye S J, Yan M, Tan X F, Liang J, Zeng G M, Wu H P, Song B, Zhou C Y, Yang Y, Wang H. Appl. Catal. B: Environ., 2019, 250: 78.

doi: 10.1016/j.apcatb.2019.03.004     URL    
[10]
Tufail A, Price W E, Hai F I. Chemosphere, 2020, 260: 127460.
[11]
Feng Y, Li H L, Lin L, Kong L J, Li X Y, Wu D L, Zhao H Y, Shih K. Chem. Eng. J., 2018, 336: 416.

doi: 10.1016/j.cej.2017.12.011     URL    
[12]
Yun E T, Lee J H, Kim J, Park H D, Lee J. Environ. Sci. Technol., 2018, 52(12): 7032.

doi: 10.1021/acs.est.8b00959     URL    
[13]
Huang K Z, Zhang H C. Environ. Sci. Technol., 2019, 53(21): 12610.

doi: 10.1021/acs.est.9b03648     pmid: 31601099
[14]
Huang K Z, Zhang H C. Sci. Total. Environ., 2020, 743: 140828.
[15]
Steele W V, Appelman E H. J. Chem. Thermodyn., 1982, 14(4): 337.

doi: 10.1016/0021-9614(82)90052-0     URL    
[16]
Bard A. Standard Potentials in Aqueous Solution. Routledge, 2017.
[17]
Benson S W. Chem. Rev., 1978, 78(1): 23.

doi: 10.1021/cr60311a003     URL    
[18]
Ball D L, Edwards J O. J. Am. Chem. Soc., 1956, 78(6): 1125.

doi: 10.1021/ja01587a011     URL    
[19]
Chen Z H, Li X C, Zhang S J, Jin J Y, Song X J, Wang X M, Tratnyek P G. Environ. Sci. Technol., 2019, 53(4): 2054.

doi: 10.1021/acs.est.8b05901     URL    
[20]
Lente G, Kalmár J, Baranyai Z, Kun A, KÉk I, Bajusz D, Takács M, Veres L, Fábián I. Inorg. Chem., 2009, 48(4): 1763.

doi: 10.1021/ic801569k     URL    
[21]
Lee J, von Gunten U, Kim J H. Environ. Sci. Technol., 2020, 54(6): 3064.

doi: 10.1021/acs.est.9b07082     URL    
[22]
Ross A B, Neta P. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. US Department of Commerce, National Bureau of Standards Washington D. C, 1979.
[23]
Gilbert B C, Stell J K. Faraday Trans., 1990, 86(19): 3261.

doi: 10.1039/ft9908603261     URL    
[24]
Ye S J, Cheng M, Zeng G M, Tan X F, Wu H P, Liang J, Shen M C, Song B, Liu J Q, Yang H L, Zhang Y F. Water Res., 2020, 179: 115876.
[25]
Hu P D, Su H R, Chen Z Y, Yu C Y, Li Q L, Zhou B X, Alvarez P J J, Long M C. Environ. Sci. Technol., 2017, 51(19): 11288.

doi: 10.1021/acs.est.7b03014     URL    
[26]
Tratnyek P G, Hoigne J. Environ. Sci. Technol., 1991, 25(9): 1596.

doi: 10.1021/es00021a011     URL    
[27]
Ren W, Xiong L L, Yuan X H, Yu Z W, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(24): 14595.

doi: 10.1021/acs.est.9b05475     URL    
[28]
Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C. Chem. Eng. J., 2015, 266: 28.

doi: 10.1016/j.cej.2014.12.065     URL    
[29]
Zhang T, Chen Y, Wang Y R, Le Roux J, Yang Y, CrouÉ J P. Environ. Sci. Technol., 2014, 48(10): 5868.

doi: 10.1021/es501218f     pmid: 24779765
[30]
Duan X G, Sun H Q, Wang Y X, Kang J, Wang S B. ACS Catal., 2015, 5(2): 553.

doi: 10.1021/cs5017613     URL    
[31]
Yun E T, Yoo H Y, Bae H, Kim H I, Lee J. Environ. Sci. Technol., 2017, 51(17): 10090.

doi: 10.1021/acs.est.7b02519     URL    
[32]
Cheng X, Guo H G, Zhang Y L, Korshin G V, Yang B. Water Res., 2019, 157: 406.

doi: S0043-1354(19)30297-0     pmid: 30978663
[33]
Wang H Z, Guo W Q, Liu B H, Wu Q L, Luo H C, Zhao Q, Si Q S, Sseguya F, Ren N Q. Water Res., 2019, 160: 405.

doi: 10.1016/j.watres.2019.05.059     URL    
[34]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817     URL    
[35]
Ho S H, Chen Y D, Li R X, Zhang C F, Ge Y M, Cao G L, Ma M, Duan X G, Wang S B, Ren N Q. Water Res., 2019, 159: 77.

doi: 10.1016/j.watres.2019.05.008     URL    
[36]
He J, Xiao Y, Tang J C, Chen H K, Sun H W. Sci. Total. Environ., 2019, 690: 768.

doi: 10.1016/j.scitotenv.2019.07.043     URL    
[37]
Yu J F, Tang L, Pang Y, Zeng G M, Feng H P, Zou J J, Wang J J, Feng C Y, Zhu X, Ouyang X L, Tan J S. Appl. Catal. B: Environ., 2020, 260: 118160.
[38]
Chu C H, Yang J, Huang D H, Li J F, Wang A Q, Alvarez P J J, Kim J H. Environ. Sci. Technol., 2019, 53(17): 10352.

doi: 10.1021/acs.est.9b03067     URL    
[39]
Qin J X, Dai L, Shi P H, Fan J C, Min Y L, Xu Q J. J. Hazard. Mater., 2020, 398: 122808.
[40]
Tang L, Liu Y N, Wang J J, Zeng G M, Deng Y C, Dong H R, Feng H P, Wang J J, Peng B. Appl. Catal. B: Environ., 2018, 231: 1.
[41]
Feng Y, Zhang L Y, Yang Z Q, Fan Y A, Shih K, Li H L, Liu Y, Wu D L. Chem. Eng. J., 2020, 392: 123724.
[42]
Zhu S S, Jin C, Duan X G, Wang S B, Ho S H. Chem. Eng. J., 2020, 393: 124725.
[43]
van der Zee F P, Bisschops I A E, Lettinga G, Field J A. Environ. Sci. Technol., 2003, 37(2): 402.

doi: 10.1021/es025885o     URL    
[44]
Pignatello J J, Mitch W A, Xu W Q. Environ. Sci. Technol., 2017, 51(16): 8893.

doi: 10.1021/acs.est.7b01088     pmid: 28753285
[45]
Yue X H, Jin X, Gu C. Mater. Rep., 2020, 34(3): 34.
(岳先会, 金鑫, 谷成. 材料导报, 2020, 34(3): 34.)
[46]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.)

doi: 10.7536/PC170310    
[47]
Lee H, Kim H I, Weon S, Choi W, Hwang Y S, Seo J, Lee C, Kim J H. Environ. Sci. Technol., 2016, 50(18): 10134.

doi: 10.1021/acs.est.6b02079     URL    
[48]
Sun Z Q, Zhao L, Liu C H, Zhen Y F, Ma J. Chem. Eng. J., 2020, 381: 122510.
[49]
Huang G X, Wang C Y, Yang C W, Guo P C, Yu H Q. Environ. Sci. Technol., 2017, 51(21): 12611.

doi: 10.1021/acs.est.7b03007     URL    
[50]
Yao Y, Cai Y, Lu F, Wei F, Wang X, Wang S. J. Hazard. Mater., 2014, 270: 61.

doi: 10.1016/j.jhazmat.2014.01.027     URL    
[51]
Saputra E, Muhammad S, Sun H Q, Ang H M, TadÉ M O, Wang S B. Environ. Sci. Technol., 2013, 47(11): 5882.

doi: 10.1021/es400878c     pmid: 23651050
[52]
Huang J Z, Dai Y F, Singewald K, Liu C C, Saxena S, Zhang H C. Chem. Eng. J., 2019, 370: 906.

doi: 10.1016/j.cej.2019.03.238     URL    
[53]
Luo H, Lin Q, Zhang X, Huang Z, Fu H, Xiao R, Liu S S. J. Hazard. Mater., 2020, 391: 123555.
[54]
Jiang T, Amadei C A, Gou N, Lin Y S, Lan J Q, Vecitis C D, Gu A Z. Environ. Sci.: Nano, 2020, 7(5): 1348.
[55]
Kobayashi N, Izumi H, Morimoto Y. J. Occup. Heal., 2017, 59(5): 394.
[56]
Xiang W, Zhang X Y, Chen J J, Zou W X, He F, Hu X, Tsang D C W, Ok Y S, Gao B. Chemosphere, 2020, 252: 126539.
[57]
He L Z, Zhong H, Liu G X, Dai Z M, Brookes P C, Xu J M. Environ. Pollut., 2019, 252: 846.

doi: 10.1016/j.envpol.2019.05.151     URL    
[58]
Li H C, Shan C, Pan B C. Environ. Sci. Technol., 2018, 52(4): 2197.

doi: 10.1021/acs.est.7b05563     URL    
[59]
Feng Y, Liao C Z, Kong L J, Wu D L, Liu Y M, Lee P H, Shih K. J. Hazard. Mater., 2018, 354: 63.

doi: 10.1016/j.jhazmat.2018.04.056     URL    
[60]
Wang L H, Xu H D, Jiang N, Wang Z M, Jiang J, Zhang T. Environ. Sci. Technol., 2020, 54(7): 4686.

doi: 10.1021/acs.est.0c00284     URL    
[61]
Feng Y, Qing W H, Kong L J, Li H L, Wu D L, Fan Y A, Lee P H, Shih K. Water Res., 2019, 149: 1.

doi: 10.1016/j.watres.2018.10.090     URL    
[62]
Feng Y, Lee P H, Wu D L, Zhou Z Y, Li H K, Shih K. J. Hazard. Mater., 2017, 331: 81.

doi: 10.1016/j.jhazmat.2017.02.029     URL    
[63]
Zong Y, Guan X H, Xu J, Feng Y, Mao Y F, Xu L Q, Chu H Q, Wu D L. Environ. Sci. Technol., 2020, 54(24): 16231.

doi: 10.1021/acs.est.0c06808     URL    
[64]
Feng Y, Lee P H, Wu D L, Shih K. Water Res., 2017, 120: 12.

doi: 10.1016/j.watres.2017.04.070     URL    
[65]
Pestovsky O, Bakac A. Inorg. Chem., 2006, 45(2): 814.

pmid: 16411719
[66]
Dong H Y, Li Y, Wang S C, Liu W F, Zhou G M, Xie Y F, Guan X H. Environ. Sci. Technol. Lett., 2020, 7(3): 219.

doi: 10.1021/acs.estlett.0c00025     URL    
[67]
Gilbert B C, Norman R O C, Sealy R C. J. Chem. Soc., Perkin Trans. 2, 1975(4): 303.
[68]
Wang Z H, Ma W H, Chen C C, Ji H W, Zhao J C. Chem. Eng. J., 2011, 170(2/3): 353.

doi: 10.1016/j.cej.2010.12.002     URL    
[69]
Gao H Y, Huang C H, Mao L, Shao B, Shao J, Yan Z Y, Tang M, Zhu B Z. Environ. Sci. Technol., 2020, 54(21): 14046.

doi: 10.1021/acs.est.0c04410     URL    
[70]
Fang G D, Dionysiou D D, Al-Abed S R, Zhou D M. Appl. Catal. B: Environ., 2013, 129: 325.

doi: 10.1016/j.apcatb.2012.09.042     URL    
[71]
Zhou Y, Jiang J, Gao Y, Ma J, Pang S Y, Li J, Lu X T, Yuan L P. Environ. Sci. Technol., 2015, 49(21): 12941.

doi: 10.1021/acs.est.5b03595     URL    
[72]
Liu C M, Diao Z H, Huo W Y, Kong L J, Du J J. Environ. Pollut., 2018, 239: 698.

doi: 10.1016/j.envpol.2018.04.084     URL    
[73]
Nieto-Juarez J I, Pierzchła K, Sienkiewicz A, Kohn T. Environ. Sci. Technol., 2010, 44(9): 3351.

doi: 10.1021/es903739f     pmid: 20356037
[74]
Li X N, Huang X, Xi S B, Miao S, Ding J, Cai W Z, Liu S, Yang X L, Yang H B, Gao J J, Wang J H, Huang Y Q, Zhang T, Liu B. J. Am. Chem. Soc., 2018, 140(39): 12469.

doi: 10.1021/jacs.8b05992     URL    
[75]
Sun B J, Ma W J, Wang N, Xu P, Zhang L J, Wang B N, Zhao H H, Lin K Y A, Du Y C. Environ. Sci. Technol., 2019, 53(16): 9771.

doi: 10.1021/acs.est.9b03374     URL    
[76]
Haag W R, Hoigne J. Environ. Sci. Technol., 1986, 20(4): 341.

doi: 10.1021/es00146a005     pmid: 22300204
[77]
Yang Y, Banerjee G, Brudvig G W, Kim J H, Pignatello J J. Environ. Sci. Technol., 2018, 52(10): 5911.

doi: 10.1021/acs.est.8b00735     pmid: 29664293
[78]
Thompson R C, Wieland P, Appelman E H. Inorg. Chem., 1979, 18(7): 1974.

doi: 10.1021/ic50197a051     URL    
[79]
Ding Y B, Wang X R, Fu L B, Peng X Q, Pan C, Mao Q H, Wang C J, Yan J C. Sci. Total. Environ., 2021, 765: 142794.
[80]
Yun E T, Moon G H, Lee H, Jeon T H, Lee C, Choi W, Lee J. Appl. Catal. B: Environ., 2018, 237: 432.

doi: 10.1016/j.apcatb.2018.04.067     URL    
[81]
Du X D, Zhang Y Q, Hussain I, Huang S B, Huang W L. Chem. Eng. J., 2017, 313: 1023.

doi: 10.1016/j.cej.2016.10.138     URL    
[82]
Nie C Y, Dai Z H, Liu W J, Duan X G, Wang C Y, Lai B, Ao Z M, Wang S B, An T C. Environ. Sci.: Nano, 2020, 7(7): 1899.
[83]
Duan X G, Ao Z M, Zhang H Y, Saunders M, Sun H Q, Shao Z P, Wang S B. Appl. Catal. B: Environ., 2018, 222: 176.

doi: 10.1016/j.apcatb.2017.10.007     URL    
[84]
Dai Z H, Li D D, Ao Z M, Wang S B, An T C. J. Hazard. Mater., 2021, 405: 124684.
[85]
Li J Q, Li M T, Sun H Q, Ao Z M, Wang S B, Liu S M. ACS Catal., 2020, 10(6): 3516.

doi: 10.1021/acscatal.9b05273     URL    
[86]
Han C, Duan X G, Zhang M J, Fu W Z, Duan X Z, Ma W J, Liu S M, Wang S B, Zhou X G. Carbon, 2019, 153: 73.

doi: 10.1016/j.carbon.2019.06.107     URL    
[87]
Duan X G, Ao Z M, Sun H Q, Zhou L, Wang G X, Wang S B. Chem. Commun., 2015, 51(83): 15249.

doi: 10.1039/C5CC05101K     URL    
[88]
Yang Q, Chen Y D, Duan X G, Zhou S K, Niu Y, Sun H Q, Zhi L J, Wang S B. Appl. Catal. B: Environ., 2020, 276: 119146.
[89]
Ren W, Nie G, Zhou P, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(10): 6438.

doi: 10.1021/acs.est.0c01161     URL    
[90]
Wang X B, Qin Y L, Zhu L H, Tang H Q. Environ. Sci. Technol., 2015, 49(11): 6855.

doi: 10.1021/acs.est.5b01059     URL    
[91]
Lian L S, Yao B, Hou S D, Fang J Y, Yan S W, Song W H. Environ. Sci. Technol., 2017, 51(5): 2954.

doi: 10.1021/acs.est.6b05536     URL    
[92]
Zhang W Q, Zhou S Q, Sun J L, Meng X Y, Luo J M, Zhou D D, Crittenden J. Environ. Sci. Technol., 2018, 52(13): 7380.

doi: 10.1021/acs.est.8b01662     URL    
[93]
Ya L D, Wang W L, Hu H Y, Wu Q Y, Wu Y H, Chen Z. Acta Sci. Circumstantiae, 2020, 40(11): 3868.
(牙柳丁, 王文龙, 胡洪营, 吴乾元, 巫寅虎, 陈卓. 环境科学学报, 2020, 40(11): 3868. )
[94]
Feng Y, Lee P H, Wu D L, Shih K. Environ. Sci. Technol., 2017, 51(4): 2312.

doi: 10.1021/acs.est.6b04528     URL    
[95]
Jayson G G, Parsons B J, Swallow A J. J. Chem. Soc., Faraday Trans. 1, 1973, 69: 1597.

doi: 10.1039/CT8966900001     URL    
[96]
Fortnum D H, Battaglia C J, Cohen S R, Edwards J O. J. Am. Chem. Soc., 1960, 82(4): 778.

doi: 10.1021/ja01489a004     URL    
[97]
Lane R F, Adams C D, Randtke S J, Carter R E Jr. Water Res., 2015, 79: 68.

doi: 10.1016/j.watres.2015.04.014     URL    
[98]
Amildon Ricardo I, Paiva V A B, Paniagua C E S, TrovÓ A G. Chem. Eng. J., 2018, 347: 763.

doi: 10.1016/j.cej.2018.04.169     URL    
[99]
Zuo Z H, Cai Z L, Katsumura Y, Chitose N, Muroya Y. Radiat. Phys. Chem., 1999, 55(1): 15.

doi: 10.1016/S0969-806X(98)00308-9     URL    
[100]
Canonica S, Kohn T, Mac M, Real F J, Wirz J, von Gunten U. Environ. Sci. Technol., 2005, 39(23): 9182.

pmid: 16382940
[101]
Lutze H V, Bircher S, Rapp I, Kerlin N, Bakkour R, Geisler M, von Sonntag C, Schmidt T C. Environ. Sci. Technol., 2015, 49(3): 1673.

doi: 10.1021/es503496u     URL    
[102]
Xie P C, Ma J, Liu W, Zou J, Yue S Y, Li X C, Wiesner M R, Fang J Y. Water Res., 2015, 69: 223.

doi: 10.1016/j.watres.2014.11.029     URL    
[103]
Hodges B C, Cates E L, Kim J H. Nat. Nanotechnol., 2018, 13(8): 642.

doi: 10.1038/s41565-018-0216-x     URL    
[104]
Nurmi J T, Tratnyek P G. Environ. Sci. Technol., 2002, 36(4): 617.

doi: 10.1021/es0110731     URL    
[105]
Chen R Z, Pignatello J J. Environ. Sci. Technol., 1997, 31(8): 2399.

doi: 10.1021/es9610646     URL    
[106]
Alvarez P J J, Chan C K, Elimelech M, Halas N J, Villagrán D. Nat. Nanotechnol., 2018, 13(8): 634.

doi: 10.1038/s41565-018-0203-2     pmid: 30082804
[1] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[2] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[3] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[4] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[5] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[6] 庞义军, 陈晓晖, 许承志, 雷阳军, 魏可镁. 丙烯气相环氧化催化剂及其机理研究[J]. 化学进展, 2014, 26(08): 1307-1316.
[7] 杨波, 李影影, 余刚, 邓述波, 卓琼芳, 张鸿. 物化作用氧化降解PFOA/PFOS[J]. 化学进展, 2014, 26(07): 1265-1274.
[8] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.
[9] 王猛, 惠永海, 张雪华, 魏雅娜, 史岷山, 王吉德*. 四氢呋喃的氧化[J]. 化学进展, 2013, 25(07): 1158-1165.
[10] 张伟伟, 钟欣欣, 司玉冰, 赵仪*. Non-Condon电子转移速率理论与含时波包方法[J]. 化学进展, 2012, 24(06): 1166-1174.
[11] 尉艳, 刘中刚, 高超, 王伦, 刘锦淮, 黄行九. 纳米材料电化学与生物传感器--有机微污染物检测新途径[J]. 化学进展, 2012, 24(04): 616-627.
[12] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.
[13] 杨新国 张登 唐瑞仁. 以卟啉为中心核的树枝状化合物[J]. 化学进展, 2009, 21(12): 2595-2604.
[14] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.
[15] 周桂林,谢红梅,邱发礼. 富氢气中CO氧化脱除研究[J]. 化学进展, 2007, 19(06): 1041-1049.