English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1307-1316 DOI: 10.7536/PC140208 前一篇   后一篇

• 综述与评论 •

丙烯气相环氧化催化剂及其机理研究

庞义军, 陈晓晖*, 许承志, 雷阳军, 魏可镁   

  1. 福州大学石油化工学院 福州大学化肥催化剂国家工程研究中心 福州 350002
  • 收稿日期:2014-02-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 陈晓晖 E-mail:chenxhfzu@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 2097630)资助

Metal Catalysts and Reaction Mechanisms in Propylene Epoxidation in Gas-Phase by Molecular Oxygen

Pang Yijun, Chen Xiaohui*, Xu Chengzhi, Lei Yangjun, Wei Kemei   

  1. School of Chemical Engineering, National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
  • Received:2014-02-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 2097630)

环氧丙烷是一种重要的化工中间体,广泛应用于化工、医药、食品、轻工等行业。环氧丙烷的传统工业生产方法——氯醇法和共氧化法存在着很多缺点,而最新开发的H2O2氧化法则存在催化剂寿命短、H2O2利用率低等问题没有根本解决。本文对环氧丙烷更为有前景的生产方法——以分子氧为氧源的气相选择性氧化丙烯的研究进展进行了总结,着重介绍了丙烯气相环氧化反应中的金、银、铜、铋-钼、钒、熔融盐催化剂以及其他以氧气为氧源的金属催化剂的研究进展,同时对丙烯气相氧化过程中涉及到的金催化剂的Ti活性位机理,铜、银催化剂上的金属环氧化中间物机理,银及其他金属的自由基机理作了相应的介绍。

Propylene oxide (PO) is an important intermediate chemical and is widely used in chemical, pharmaceutical, food, light industry and other industries. In industry, PO is produced via multiple reaction steps in the liquid phase, using hazardous chlorine or costly organic hydroperoxides as oxidants. Considering the inherent defects of the traditional processes——the chlorohydrin and hydroperoxide process, a new production technology that propylene oxide production via hydrogen peroxide (HPPO) has been developed, but many problems such as the catalyst mass transfer limitation, the catalyst deactivation and regeneration, and the need of a dedicated hydrogen peroxide production plant are encountered. So, a more attractive method for PO production with molecular oxygen by gas-phase is discussed in this paper. The most important new developments for the production of propylene oxide discussed in this paper are concentrated on the supported gold, silver, copper, vanadium, molten salt catalysts and other catalysts that used molecular oxygen as the oxygen source. At the same time, the mechanism involved in the propylene epoxidation such as the Ti active sites mechanism in Au/Ti catalysts, the OMMP (OMMP refers to a ring made up of one oxygen atom, two metal atoms and a propylene unit) intermediate mechanism in silver and copper catalysts and the radical mechanism in silver and other metal oxide catalysts are also mentioned in this paper.

Contents
1 Introduction
2 Research progress in propylene epoxidation reaction
2.1 Ag catalysts
2.2 Au catalysts
2.3 Cu catalysts
2.4 Bi and Mo catalysts
2.5 Multi-metal catalysts
2.6 Molten salts catalysts
2.7 Others
3 Conclusion and outlook

中图分类号: 

()

[1] Eissen M, Metzger J O, Schmidt E, Schneidewind U. Angew. Chem. Int. Ed., 2002, 41(3): 414.
[2] Nijhuis T A, Makkee M, Moulijn J A, Weckhuysen B M. Ind. Eng. Chem. Res., 2006, 45(10): 3447.
[3] Russo V, Tesser R, Santacesaria E, di Serio M. Ind. Eng. Chem. Res., 2013, 52(3): 1168.
[4] Bassler P, Hans-Georg-Göbbel M W. Chem. Eng. (N.Y.), 2010, 21.
[5] 朱斌(Zhu B). 石油学报 (石油加工) (Acta Petrolel Sinica (Petroleum Processing Section)), 2013, 29(2): 223.
[6] 李涛(Li T). 石油化工技术与经济(Technology & Economics in Petrochemicals), 2012, 28(3): 2.
[7] 朱留琴(Zhu L Q). 精细石油化工进展(Advances in Fine Petrochemicals), 2012, 13(10): 39.
[8] 韩勇春(Han Y C). 中国石油和化工经济分析(Petroleum & Chemical), 2013,(6): 51.
[9] 焦亦麟(Jiao Y L). 广州化工(Guangzhou Chemical Industry), 2013, 41(3): 5.
[10] 李民堂(Li M T), 王旭忠(Wang X Z). 江苏氯碱(Jiangsu Lü Jian), 2013,(3): 2.
[11] 王野(Wang Y), 朱文明(Zhu W M), 张庆红(Zhang Q H). 催化学报(Chin. J. Catal.), 2008, 29(9): 857.
[12] 苏暐光(Su W G). 广东化工(Guangdong Chemical Industry), 2013, 40(1): 55.
[13] Linic S, Barteau M A. J. Am. Chem. Soc., 2002, 124(2): 310.
[14] Torres D, Lopez N, Illas F, Lambert R M. Angew. Chem., 2007, 119(12): 2101.
[15] Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R, Elam J, Meyer R, Redfern P C. Science, 2010, 328(5975): 224.
[16] Kulkarni A, Bedolla-Pantoja M, Singh S, Lobo R F, Mavrikakis M, Barteau M A. Top. Catal., 2012, 55(1/2): 3.
[17] Hu Z M, Nakai H, Nakatsuji H. Surf. Sci., 1998, 401(3): 371.
[18] Lu G, Zuo X. Catal. Lett., 1999, 58(1): 67.
[19] Jin G, Lu G, Guo Y, Guo Y, Wang J, Liu X, Kong W, Liu X. Catal. Lett., 2004, 97(3/4): 191.
[20] Seubsai A, Senkan S. ChemCatChem, 2011, 3(11): 1751.
[21] Jin G, Lu G, Guo Y, Guo Y, Wang J, Kong W, Liu X. J. Mol. Catal. A: Chem., 2005, 232(1): 165.
[22] Lu J, Bravo-Suárez J J, Takahashi A, Haruta M, Oyama S T. J. Catal., 2005, 232(1): 85.
[23] Lu J, Bravo-Suárez J J, Haruta M, Oyama S T. Appl. Catal. A, 2006, 302(2): 283.
[24] Yao W, Guo Y L, Liu X H, Guo Y, Wang Y Q, Wang Y S, Zhang Z G, Lu G Z. Catal. Lett., 2007, 119(1/2): 185.
[25] Wang R, Guo X, Wang X, Hao J, Li G, Xiu J. Appl. Catal. A, 2004, 261(1): 7.
[26] De Oliveira A L, Wolf A, Schüth F. Catal. Lett., 2001, 73(2/4): 157.
[27] Hayashi T, Tanaka K, Haruta M. J. Catal., 1998, 178(2): 566.
[28] Haruta M, Uphade B, Tsubota S, Miyamoto A. Res. Chem. Intermed., 1998, 24(3): 329.
[29] Nijhuis T A, Huizinga B J, Makkee M, Moulijn J A. Ind. Eng. Chem. Res., 1999, 38(3): 884.
[30] Stangland E E, Taylor B, Andres R P, Delgass W N. J. Phys. Chem. B, 2005, 109(6): 2321.
[31] Sinha A K, Seelan S, Tsubota S, Haruta M. Angew. Chem. Int. Ed., 2004, 43(12): 1546.
[32] Taylor B, Lauterbach J, Delgass W. Appl. Catal. A, 2005, 291(1): 188.
[33] Zhan G, Du M, Huang J, Li Q. Catal. Commun., 2011, 12(9): 830.
[34] Bravo-Suarez J J, Bando K K, Lu J, Haruta M, Fujitani T, Oyama T. J. Phys. Chem. C, 2008, 112(4): 1115.
[35] Clerici M G, Bellussi G, Romano U. J. Catal., 1991, 129(1): 159.
[36] Joshi A M, Delgass W N, Thomson K T. J. Phys. Chem. C, 2007, 111(22): 7841.
[37] Wells D H, Delgass W N, Thomson K T. J. Am. Chem. Soc., 2004, 126(9): 2956.
[38] Chowdhury B, Bravo-Suárez J J, Mimura N, Lu J, Bando K K, Tsubota S, Haruta M. J. Phys. Chem. B, 2006, 110(46): 22995.
[39] Bravo-Suárez J, Bando K, Akita T, Fujitani T, Fuhrer T, Oyama S. Chem. Commun., 2008,(28): 3272.
[40] Sivadinarayana C, Choudhary T V, Daemen L L, Eckert J, Goodman D W. J. Am. Chem. Soc., 2004, 126(1): 38.
[41] Huang J, Akita T, Faye J, Fujitani T, Takei T, Haruta M. Angew. Chem. Int. Ed., 2009, 48(42): 7862.
[42] Huang J, Takei T, Ohashi H, Haruta M. Appl. Catal. A, 2012, 435: 115.
[43] Ojeda M, Iglesia E. Chem. Commun., 2009, 352.
[44] Chang C R, Wang Y G, Li J. Nano Res., 2011, 4(1): 131.
[45] Kapoor M, Sinha A, Seelan S, Inagaki S, Tsubota S, Yoshida H, Haruta M. Chem. Commun., 2002,(23): 2902.
[46] Lu J, Zhang X, Bravo-Suárez J J, Bando K K, Fujitani T, Oyama S T. J. Catal., 2007, 250(2): 350.
[47] Huang J, Takei T, Akita T, Ohashi H, Haruta M. Appl. Catal. B, 2010, 95(3): 430.
[48] Lee W S. Proceeding of 23rd North American Catalysis Society Meeting, 2013.
[49] Lee W S, Zhang R, Akatay M C, Baertsch C D, Stach E A, Ribeiro F H, Delgass W N. ACS Catal., 2011, 1(10): 1327.
[50] Lee W S, Cem A M, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2012, 287: 178.
[51] Lee W S, Cem A M, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2013, 308: 98.
[52] Lu J, Zhang X, Bravo-Suárez J J, Fujitani T, Oyama S T. Catal. Today, 2009, 147(3): 186.
[53] Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J. Catal., 2009, 267(2): 202.
[54] 张超(Zhang C), 潘小荣(Pan X R), 罗孟飞(Luo M F), 鲁继青(Lu J Q). 浙江师范大学学报 (自然科学版)(Journal of Zhejiang Normal University, Natural Science Edition), 2012, 35(3): 305.
[55] Taylor B, Lauterbach J, Delgass W N. Appl. Catal. A, 2005, 291(1/2): 188.
[56] Joshi A M, Delgass W N, Thomson K T. J. Phys. Chem. C, 2007, 111(22): 7841.
[57] Lee W S, Lai L C, Cem A M, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2012, 296: 31.
[58] Lu X, Zhao G F, Lu Y. Catal. Sci. Technol., 2013, 3: 2906.
[59] Campos-Martin J M, Blanco-Brieva G, Fierro J L. Angew. Chem. Int. Ed., 2006, 45(42): 6962.
[60] Wang F, Qi C, Ma J. Catal. Commun., 2007, 8(12): 1947.
[61] Cumaranatunge L, Delgass W N. J. Catal., 2005, 232(1): 38.
[62] Lee S, Molina L M, López M J, Alonso J A, Hammer B, Lee B, Seifert S, Winans R E, Elam J W, Pellin M J. Angew. Chem., 2009, 121(8): 1495.
[63] Cropley R L, Williams F J, Urquhart A J, Vaughan O P, Tikhov M S, Lambert R M. J. Am. Chem. Soc., 2005, 127(16): 6069.
[64] Torres D, Neyman K M, Illas F. Chem. Phys. Lett., 2006, 429(1): 86.
[65] Vaughan O P, Kyriakou G, Macleod N, Tikhov M, Lambert R M. J. Catal., 2005, 236(2): 401.
[66] Su W, Wang S, Ying P, Feng Z, Li C. J. Catal., 2009, 268(1): 165.
[67] Chu H, Yang L, Zhang Q, Wang Y. J. Catal., 2006, 241(1): 225.
[68] Wang Y, Chu H, Zhu W, Zhang Q. Catal. Today, 2008, 131(1): 496.
[69] Zhu W, Zhang Q, Wang Y. J. Phys. Chem. C, 2008, 112(20): 7731.
[70] He J, Zhai Q, Zhang Q, Deng W, Wang Y. J. Catal., 2013, 299: 53.
[71] Jin Q W, Wang K X, Wang J Q, Li X B, Chen J S. Chem. Res. Chin. Univ., 2011, 27(5):886.
[72] Seubsai A, Kahn M, Senkan S. ChemCatChem, 2011, 3(1): 174.
[73] Long W, Zhai Q, He J, Zhang Q, Deng W, Wang Y. ChemPlusChem, 2012, 77(1): 27.
[74] Miller A, Zohour B, Seubsai A, Noon D, Senkan S. Ind. Eng. Chem. Res., 2013, 52(28): 9551.
[75] Chen K, Bell A T, Iglesia E. J. Catal., 2002, 209(1): 35.
[76] Liu H, Iglesia E. J. Catal., 2002, 208(1): 1.
[77] Brandhorst M, Cristol S, Capron M, Dujardin C, Vezin H, Payen E. Catal. Today, 2006, 113(1): 34.
[78] Song Z, Mimura N, Bravo-Suárez J J, Akita T, Tsubota S, Oyama S T. Appl. Catal. A, 2007, 316(2): 142.
[79] Horváth B, Hronec M, Vávra I, Šustek M, Kri?anová Z, Dérer J, Dobro?ka E. Catal. Commun., 2013, 34: 16.
[80] Feng X, Qi X, Li J, Yang L, Qiu M, Yin J, Lu F, Zhong J. Appl. Surf. Sci., 2011, 257(13): 5571.
[81] Zhang L, Wang W Z, Sun S M, Xu J H, Shang M, Ren J. Appl. Catal. B, 2010, 100(1): 97.
[82] Chen R, Bi J, Wu L, Wang W, Li Z, Fu X. Inorg. Chem., 2009, 48(19): 9072.
[83] Zhao Z, Kobayashi T. Appl. Catal. A, 2001, 207(1): 139.
[84] Barreca D, Morazzoni F, Rizzi G A, Scotti R, Tondello E. Physical Chemistry Chemical Physics, 2001, 3(9): 1743.
[85] Fielicke A, Rademann K. J. Phys. Chem. A, 2000, 104(30): 6979.
[86] Chen X H, Su J F, Wei K M. J. Chem. Ind. Eng. Chin., 2004, 55(11): 1815.
[87] 陈晓晖(Chen X H), 郑婧(Zheng J), 黄清明(Huang Q M), 程燕(Chen Y), 魏可镁(Wei K M), CN 101229510, 2008.
[88] Pang Y J, Chen X H, Xu C Z, Lei Y J, Wei K M. ChemCatChem, 2014, 6(3): 876.
[89] Burrington J D, Grasselli R K. J. Catal., 1979, 59(1): 79.
[90] Peacock J, Parker A, Ashmore P, Hockey J. J. Catal., 1969, 15(4): 373.
[91] Chen J G, Menning C A, Zellner M B. Surf. Sci. Rep., 2008, 63(5): 201.
[92] Yang L, He J, Zhang Q, Wang Y. J. Catal., 2010, 276(1): 76.
[93] Zheng X, Zhang Q, Guo Y, Zhan W, Guo Y, Wang Y, Lu G. J. Mol. Catal. A: Chem., 2012, 357: 106.
[94] Pennington B T, US Patent 4785123, 1988.
[95] Meyer J L, Pennington B T, US Patent 4992567, 1991.
[96] Nijhuis T, Musch S, Makkee M, Moulijn J. Appl. Catal. A, 2000, 196(2): 217.
[97] Held A, Kowalska-Ku? J, Nowińska K. Catal. Commun., 2012, 17: 108.
[98] Liu Y, Murata K, Inaba M, Mimura N. Appl. Catal. A, 2006, 309(1): 91.
[99] Mimura N, Tsubota S, Murata K, Bando K K, Bravo-Suárez J J, Haruta M, Oyama S T. Catal. Lett., 2006, 110(1/2): 47.
[100] Martir W, Lunsford J H. J. Am. Chem. Soc., 1981, 103(13): 3728.
[101] Driscoll D J, Campbell K D, Lunsford J H. Adv. Catal., 1987, 35: 139.
[102] Orzesek H, Schulz R P, Dingerdissen U, Maier W F. Chem. Eng. Technol., 1999, 22(8): 691.
[103] Carter E A, Goddard W A. J. Catal., 1988, 112(1): 80.

[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[7] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[8] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[9] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[10] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[11] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[12] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[13] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[14] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[15] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.