English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1265-1274 DOI: 10.7536/PC140324 前一篇   

• 综述与评论 •

物化作用氧化降解PFOA/PFOS

杨波*1,2, 李影影1, 余刚2, 邓述波2, 卓琼芳3, 张鸿1   

  1. 1. 深圳大学化学与化工学院 深圳 518060;
    2. 清华大学环境学院持久性有机污染物研究中心 北京 100084;
    3. 环境保护部华南环境科学研究所 广州 510655
  • 收稿日期:2014-03-01 修回日期:2014-03-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 杨波 E-mail:boyang@szu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21177089,11275130,21307036)和国家高技术研究发展计划(863)项目(No.2013AA062705)资助

Oxidative Degradation of PFOA/PFOS with Physicochemical Techniques

Yang Bo*1,2, Li Yingying1, Yu Gang2, Deng Shubo2, Zhuo Qiongfang3, Zhang Hong1   

  1. 1. College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China;
    2. POPs Research Center, School of Environment, Tsinghua University, Beijing 100084, China;
    3. South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
  • Received:2014-03-01 Revised:2014-03-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21177089, 11275130, 21307036) and the National High-Tech Research and Development (863) Program of China (No. 2013AA062705)

全氟辛/磺酸(PFOX)具有环境持久、耐氧化、抗常规化学处理的特点。目前,针对PFOX的有效去除工艺研究已成为环境技术领域有机污染物降解方向的新热点。近年来,一些强氧化工艺被开发用于降解PFOX,主要通过各种物理作用增强化学氧化能力,实现PFOX的有效降解。本文综述了纯化学过程以及光、电、热、声、等离子体、微波、机械力等物理作用促进化学氧化降解PFOX的反应机理、降解途径和各因素的影响机制,以及去除效率和能耗等,介绍了该方向的最新研究进展,讨论分析了这些技术存在的问题,并提出了今后技术应用的重点研究方向。

Perfluorooctanoate and perfluoroctanesulfonate (PFOX) are environmentally persistent, recalcitrant to oxidation, and resistant to conventional chemical treatments. The related studies on the exploration and establishment of the effective removal techniques for PFOX have become the new hotspot to the degradation of organic pollutants in the field of environmental technology. Recently, highly active oxidation methods for the efficient degradation of PFOX were developed through the promotion effect of various physical processes on the oxidation ability of conventional chemical methods. So this paper reviews the concerned reports which employed the single chemical oxidation approach and the coupling techniques of physical processes and chemical oxidation for the removal of PFOX. The coupling effects of physical methods and chemical oxidation processes can result in photolysis, electrolysis, pyrolysis, sonolysis, plasma-induced oxidation, microwave-induced oxidation, or mechanochemistry destruction of PFOX. For each coupling physicochemical techniques, the mechanism of the oxidative reaction, the detailed degradation pathway of PFOX, the effect of various influential factors on reaction process as well as the removal efficiency and energy consumption are summarized in this paper. It is also introduced for the progress on these above studies and further discussion about current problems for these techniques. In addition, the future trends for the development of these techniques to PFOX degradation are prospected for their practicality.

Contents
1 Introduction
2 PFOX oxidation only by chemical reagents
3 Oxidative degradation of PFOX by various physicochemical processes
3.1 PFOX degradation by photochemistry
3.2 PFOX degradation by electrochemistry
3.3 PFOX degradation by thermochemistry
3.3.1 High-temperature pyrolysis
3.3.2 Ultrasonic pyrolysis
3.4 PFOX degradation by plasma
3.5 Microwave-assisted PFOX degradation
3.5 PFOX degradation by mechanochemistry
4 Conclusions and prospects

中图分类号: 

()

[1] Yeung L W Y, So M K, Jiang G B, Taniyasu S, Yamashita N, Song M Y, Wu Y N, Li J G, Giesy J P, Guruge K S, Lam P K S. Environ. Sci. Technol., 2006, 40: 715.
[2] Riget F, Bossi R, Sonne C, Vorkamp K, Dietz R. Chemosphere, 2013, 93: 1607.
[3] Zhang Y F, Beesoon S, Zhu L Y, Martin J W. Environ. Int., 2013, 53: 9.
[4] Braune B M, Letcher R J. Environ. Sci. Technol., 2013, 47: 616.
[5] Zhang L L, Niu J F, Li Y, Wang Y J, Sun D. Environ. Pollut., 2013, 180: 34.
[6] DeWitt J C, Peden-Adams M M, Keller J M, Germolec D R. Toxicol. Pathol., 2012, 40: 300.
[7] Maisonet M, Terrell M L, McGeehin M A, Christensen K Y, Holmes A, Calafat A M, Marcus M. Environ. Health Perspect., 2012, 120: 1432.
[8] Darrow L A, Stein C R, Steenland K. Environ. Health Perspect., 2013, 121: 1207.
[9] Remde A, Debus R. Chemosphere, 1996, 32: 1563.
[10] Pignatello J J, Oliveros E, MacKay A. Crit. Rev. Environ. Sci. Technol., 2006, 36: 1.
[11] Oller I, Malato S, Sanchez-Perez J A. Sci. Total Environ., 2011, 409: 4141.
[12] Matilainen A, Sillanpaa M. Chemosphere, 2010, 80: 351.
[13] Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Front. Env. Sci. Eng., 2009, 3: 129.
[14] Liu C S, Higgins C P, Wang F, Shih K. Sep. Purif. Technol., 2012, 91: 46.
[15] Lee Y C, Lo S L, Kuo J, Lin Y L. Chem. Eng. J., 2012, 198/199: 27.
[16] Liu C S, Shih K, Wang F. Sep. Purif. Technol., 2012, 87: 95.
[17] Wang X Y, Zeng G M, Zhu J L. J. Hazard. Mater., 2008, 153: 810.
[18] Li R X, Yang C P, Chen H, Zeng G M, Yu G L, Guo J Y. J. Hazard. Mater., 2009, 167: 1028.
[19] Schroder H F, Meesters R J W. J. Chromatogr. A, 2005, 1082: 110.
[20] Lin Angela Y C, Panchangam S C, Chang C Y, Andy Hong P K, Hsueh H F. J. Hazard. Mater., 2012, 243: 272.
[21] Getoff N, Schenck G O. Photochem. Photobiol., 1968, 8: 167.
[22] Fricke H, Hart E J. J. Chem. Phys., 1936, 4: 418.
[23] Chen J, Zhang P. Water Sci. Technol., 2006, 54: 317.
[24] Chen J, Zhang P, Liu J. J. Environ. Sci., 2007, 19: 387.
[25] Yamamoto T, Noma Y, Sakai S, Shibata Y. Environ. Sci. Technol., 2007, 41: 5660.
[26] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Environ. Sci. Technol., 2005, 39: 2383.
[27] Hori H, Hayakawa E, Koike K, Einaga H, Ibusuki T. J. Mol. Catal. A-Chem. 2004, 211: 35.
[28] Wang Y, Zhang P Y, Pan G, Chen H. J. Hazard. Mater., 2008, 160: 181.
[29] Kutsuna S, Nagaoka Y, Takeuchi K, Hori H. Environ. Sci. Technol., 2006, 40: 6824.
[30] Dillert R, Bahnemann D, Hidaka H. Chemosphere, 2007, 67: 785.
[31] Chen J, Zhang P Y, Zhang L. Chem. Lett., 2006, 35: 230.
[32] Song C, Chen P, Wang C Y, Zhu L Y. Chemosphere, 2012, 86: 853.
[33] Li X Y, Zhang P Y, Jin L, Shao T, Li Z M, Cao J J. Environ. Sci. Technol., 2012, 46: 5528.
[34] Li Z M, Zhang P Y, Shao T, Wang J L, Jin L, Li X Y. J. Hazard. Mater., 2013, 260: 40.
[35] Shao T, Zhang P Y, Jin L, Li Z M. Appl. Catal. B-Environ., 2013, 142: 654.
[36] Zhu X P, Tong M P, Shi S Y, Zhao H Z, Ni J R. Environ. Sci. Technol., 2008, 42: 4914.
[37] 杨波(Yang B), 余刚(Yu G), 张祖麟(Zhang Z L). 化学进展(Progress in Chemistry), 2006, 18(1): 87.
[38] 卓琼芳(Zhuo Q F), 杨波(Yang B), 邓述波(Deng S B), 黄俊(Huang J), 王斌(Wang B), 余刚(Yu G). 化学进展(Progress in Chemistry), 2012, 24(4): 628.
[39] Carter K E, Farrell J. Environ. Sci. Technol., 2008, 42: 6111.
[40] Chen X M, Chen G H, Gao F R, Yue P L. Environ. Sci. Technol., 2003, 37: 5021.
[41] Schmalz V, Dittmar T, Haaken D, Worch E. Water Res., 2009, 43: 5260.
[42] Ochiai T, Iizuka Y, Nakata K, Murakami T, Tryk D A, Fujishima A, Koide Y, Morito Y. Diam. Relat. Mat., 2011, 20: 64.
[43] Zhao B X, Zhang P Y. Catal. Commun., 2009, 10: 1184.
[44] Hori H, Nagaoka Y, Murayama M, Kutsuna S. Environ. Sci. Technol., 2008, 42: 7438.
[45] Hori H, Yamamoto A, Kutsuna S. Environ. Sci. Technol., 2005, 39: 7692.
[46] Zhuo Q F, Deng S B, Yang B, Huang J, Wang B, Zhang T T, Yu G. Electrochim. Acta, 2012, 77: 17.
[47] de Carvalho L A, de Andrade A R, Bueno P R. Quim. Nova, 2006, 29: 796.
[48] 孔德生(Kong D S), 吕文华(Lu W H), 冯媛媛(Feng Y Y), 毕思玮(Bi S W). 化学进展(Progress in Chemistry), 2009, 21(6): 1107.
[49] Kotz R, Stucki S, Carcer B. J. Appl. Electrochem., 1991, 21: 14.
[50] Stucki S, Kotz R, Carcer B, Suter W. J. Appl. Electrochem., 1991, 21: 99.
[51] Zhao G H, Cui X, Liu M C, Li P Q, Zhang Y G, Cao T C, Li H X, Lei Y Z, Liu L, Li D M. Environ. Sci. Technol., 2009, 43: 1480.
[52] Zhuo Q F, Deng S B, Yang B, Huang J, Yu G. Environ. Sci. Technol., 2011, 45: 2973.
[53] Xiao H S, Lv B Y, Zhao G H, Wang Y J, Li M F, Li D M. J. Phys. Chem. A, 2011, 115: 13836.
[54] Zhao H Y, Gao J X, Zhao G H, Fan J Q, Wang Y B, Wang Y J. Appl. Catal. B-Environ., 2013, 136: 278.
[55] Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ. Sci. Technol., 2012, 46: 10191.
[56] Lin H, Niu J F, Xu J L, Huang H O, Li D, Yue Z H, Feng C H. Environ. Sci. Technol., 2013, 47: 13039.
[57] Chen X M, Yao P D, Wang D H, Wu X Z. Chem. Eng. J., 2009, 147: 412.
[58] Krusic P J, Marchione A A, Roe D C. J. Fluor. Chem., 2005, 126: 1510.
[59] Lee M C, Choi W. J. Ind. Eng. Chem., 2004, 10: 107.
[60] Xie H D, Sun B, Zhu X M. J. Hazard. Mater., 2009, 168: 765.
[61] Burgess D R, Zachariah M R, Tsang W, Westmoreland P R. Prog. Energy Combust. Sci., 1995, 21: 453.
[62] Lines D, Sutcliffe H. J. Fluor. Chem., 1984, 25: 505.
[63] Lazerte J D, Hals L J, Reid T S, Smith G H. J. Am. Chem. Soc., 1953, 75: 4525.
[64] Krusic P J, Roe D C. Anal. Chem., 2004, 76: 3800.
[65] Yim B, Okuno H, Nagata Y, Nishimura R, Maeda Y. Ultrason. Sonochem., 2002, 9: 209.
[66] Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Environ. Sci. Technol., 2008, 42: 8057.
[67] Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. J. Phys. Chem. C, 2008, 112: 16850.
[68] Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Environ. Sci. Technol., 2005, 39: 3388.
[69] Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. J. Phys. Chem. A, 2008, 112: 4261.
[70] Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Environ. Sci. Technol., 2010, 44: 445.
[71] Vecitis C D, Wang Y J, Cheng J, Park H, Mader B T, Hoffmann M R. Environ. Sci. Technol., 2010, 44: 432.
[72] Van Durme J, Dewulf J, Leys C, Van Langenhove H. Appl. Catal. B-Environ., 2008, 78: 324.
[73] Vandenbroucke A M, Morent R, De Geyter N, Leys C. J. Hazard. Mater., 2011, 195: 30.
[74] Yasuoka K, Sasaki K, Hayashi R. Plasma Sources Sci. Technol., 2011, 20: 034009.
[75] Horikoshi S, Sato S, Abe M, Serpone N. Ultrason. Sonochem., 2011, 18: 938.
[76] Remya N, Lin J G. Chem. Eng. J., 2011, 166: 797.
[77] Chen Y L, Ai Z H, Zhang L Z. J. Hazard. Mater., 2012, 235: 92.
[78] Horikoshi S, Hidaka H, Serpone N. Environ. Sci. Technol., 2002, 36: 5229.
[79] Liu X T, Zhao W, Sun K, Zhang G X, Zhao Y. Chemosphere, 2011, 82: 773.
[80] Lee Y C, Lo S L, Chiueh P T, Chang D G. Water Res., 2009, 43: 2811.
[81] Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Water Res., 2010, 44: 886.
[82] Lee Y, Lo S L, Kuo J, Hsieh C H. Front. Env. Sci. Eng., 2012, 6: 17.
[83] Horikoshi S, Tsuchida A, Sakai H, Abe M, Serpone N. J. Photochem. Photobiol. A-Chem., 2011, 222: 97.
[84] Guo X Y, Xiang D, Duan G H, Mou P. Waste Manage., 2010, 30: 4.
[85] Takacs L. Chem. Soc. Rev., 2013, 42: 7649.
[86] Zhang K L, Huang J, Yu G, Zhang Q W, Deng S B, Wang B. Environ. Sci. Technol., 2013, 47: 6471.

[1] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[2] 王媛 张彭义. 全氟辛酸和全氟辛烷磺酸人体暴露途径解析及其污染控制技术*[J]. 化学进展, 2010, 22(01): 210-219.
阅读次数
全文


摘要

物化作用氧化降解PFOA/PFOS