English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1368-1375 DOI: 10.7536/PC200123 前一篇   后一篇

• 综述 •

光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略

张旭强1, 吕功煊1,*()   

  1. 1. 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室 兰州 730000
  • 收稿日期:2020-02-03 修回日期:2020-02-26 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 吕功煊
  • 作者简介:
    *Corresponding author e-mail:

Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting

Xuqiang Zhang1, Gongxuan Lu1,*()   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2020-02-03 Revised:2020-02-26 Online:2020-09-24 Published:2020-06-30
  • Contact: Gongxuan Lu

Ⅲ-Ⅴ族半导体材料(如GaAs、InP、GaP等)具有抗辐射性能高、温度特性好、耐高温等特点。相比于其他材料构建的光电催化体系,由这类半导体构成的光电极具有更高的太阳能吸收效率和光电转换效率。然而,大多数Ⅲ-Ⅴ族半导体在水溶液电解质中的物理化学性质很不稳定,导致太阳能驱动分解水性能衰减较快。基于此,本文综述了薄膜保护层在改善Ⅲ-Ⅴ族半导体光电极电化学稳定性方面的主要成就和研究现状,分析总结了获得稳定高效的光电反应界面和分解水效率的策略,探讨了导致材料衰减的原因和相应改善措施,最后展望了薄膜保护策略的未来发展前景。

Due to high radiation resistance, good temperature characteristics and stability at high temperature, photoelectrodes integrated by Ⅲ-Ⅴ semiconductor materials, such as GaAs, GaP and InP, show higher solar absorption efficiency and photoelectric conversion efficiency compared with photoelectrodes constructed from other materials. However, the physical and chemical properties of most Ⅲ-Ⅴ semiconductors in aqueous electrolytes are very unstable, resulting in a rapid degradation of solar-driven water splitting performance. The recent progress of protective layer films research in improving the electrochemical stability of Ⅲ-Ⅴ semiconductor photoelectrodes are reviewed. In order to obtain a stable and efficient photoelectric reaction interface and the water splitting efficiency, the reasons of material attenuation and corresponding improvement methods have been highlighted. In addition, the future development of thin-layer protection strategies to obtain more efficient solar-driven water splitting devices based on Ⅲ-Ⅴ semiconductors have been prospected.

Contents

1 Introduction

2 Mechanisms of corrosion of Ⅲ-Ⅴ group semiconductors and protective measures

3 Protection of photocathode of Ⅲ-Ⅴ group semiconductors in solar-driven water splitting

4 Protection of photoanode in solar-driven water splitting

5 Conclusion

()
图1 半导体光电极太阳能分解水的能带图示意图:(a)单光子方法;(b)双光子方法;(c)多光子方法[9]
Fig.1 Schematic illustration of the energy band diagrams of semiconductor photoelectrodes for solar water splitting:(a) single-photon route;(b) two-photon route;(c) multi-photon route[9]
图2 GaAs闪锌矿晶体结构图[10]
Fig.2 Schematic diagram for blende crystal structure of GaAs[10]
图3 (a)和(b)对应稳定和不稳定半导体电极的能带排列,其中n E decomp表示阴极分解电位,p E decomp表示阳极分解电位[17]
Fig.3 (a) Stable and(b) unstable band alignment for semiconductor electrodes,where n E decomp and p E decomp are cathodic decomposition potential and anodic decomposition potential[17]
表1 沉积有保护层的Ⅲ-Ⅴ族半导体电极的析氢性能
Table 1 The performance of Ⅲ-Ⅴ semiconductor photoelectrodes with protection layer protects for hydrogen evolution performance
图4 (a) 致密TiO2薄膜包裹的InP纳米阵列的SEM图片;(b) TiO2/InP光电性能测试J-E曲线[34]
Fig.4 SEM image of the InP nanoarrays coated with dense TiO2 film;(b) J-E data for TiO2/InP[34]
图5 (a) 由印刷法组装而成的集成GaAs光电阴极的截面图;(b) 不同材料在催化界面上组装成的GaAs光电阴极电流密度-时间(J-t)图[38]
Fig.5 (a) Cross-section of an integrated GaAs photocathode fabricated by printing-assembly method;(b) Current density-time(J-t) plots of integrated GaAs photocathodes[38]
图6 (a)保护层厚度为16 nm的SrTiO3/np-GaAs(001)光阴极示意图;(b)保护层SrTiO3与同质结np-GaAs(001)界面的高角度环状暗场图像;(c) 对应的H2O/SrTiO3和SrTiO3/GaAs(001)界面的能量;(d) SrTiO3/n-GaAs(001)界面XPS的价带位置[39]
Fig.6 (a) Scheme of SrTiO3/np-GaAs(001) photocathode with the 16 nm-thick protection layer.(b) The high-angle annular dark-field imaging and interface atomic structure of the SrTiO3/np-GaAs(001).(c) The corresponding energy alignment at the water/SrTiO3 on SrTiO3/GaAs(001) interfaces.(d) The XPS valence band offset at the SrTiO3/n-GaAs(001) interface[39]
图7 (a) GaAs/InGaP/TiO2/Ni双结光电极结构的SEM[40];(b) GaN-GaInP2/GaAs/Ge三结结构光阴极分解水示意图[41]
Fig.7 (a) Cross-sectional SEM image of a GaAs/InGaP/TiO2/Ni 2 J structural photoelectrode[40].(b) Schematic illustration of the 3 J structural GaN-GaInP2/GaAs/Ge protected by multifunctional GaN nanostructures[41]
图8 光阳极n-Si/p-CuI/nip a-Si/np GaP/RuO2的结构和能带示意图[53]
Fig.8 Schematic structure and an expected band diagram of the n-Si/p-CuI/nip a-Si/np GaP/RuO2 electrode [53]
表2 保护层防护Ⅲ-Ⅴ族半导体(如GaAs、InP、GaP、GaInP2、GaAlAs)析氧性能
Table 2 The oxygen evolution performance of Ⅲ-Ⅴ semiconductors(such as GaAs, InP, GaP, GaInP2, GaAlAs) with protection layers
图9 (a) 稳定的抗腐蚀光阳极横截面示意图;(b) 2 nm Ni/118 nm TiO2防护的np +-GaAs和n-GaP光电极的电流密度[29].
Fig.9 (a) Cross-sectional scheme of a stable photoanode against corrosion.(b) The photocurrent density of 2 nm Ni/118 nm TiO2-coated np +-GaAs and n-GaP photoelectrodes[29]
图10 p-GaAs(100)表面偶极子修饰的示意图[56]
Fig.10 Scheme of p-GaAs(100) modified with surface dipoles[56]
[1]
Fujishima A , Honda K. Nature, 1972, (238): 37.
[2]
Wang M , Li Z , Wu Y , Ma J , Lu G. J. Catal., 2017, 353: 162.
[3]
Zhang X , Lu G. Carbon, 2016, 108: 215.
[4]
Dimroth F , Grave M , Beutel P , Fiedeler U , Karcher C , Tibbts T N D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R. Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamacheix T, Dobrich A, Hannappel T, Schwarzburg K. Prog. Photovolt: Res. Appl., 2014, 22(3): 277.
[5]
Zhang X , Tian B , Zhen W , Li Z , Wu Y , Lu G. J. Catal., 2017, 354: 258.
[6]
王蒙( Wang M ), 马建泰(Ma J T), 吕功煊(Lu G X). 分子催化(J. Mol. Catal., 2019, 33(5): 461.
[7]
时晓羽( Shi X Y ), 李会鹏(Li H B), 赵华(Zhao H). 分子催化(J. Mol. Catal., 2019, 33(4): 391.
[8]
赵云霏( Zhao Y F ), 毋瑞仙(Wu R X), 蒋平平(Jiang P P), 董玉明(Dong Y M). 分子催化(J. Mol. Catal., 2018, 32(2): 142.
[9]
Wang Y , Wu Y , Schwartz J , Sung C , Hovden R , Mi Z. Joule, 2019, 3(10): 2444.
[10]
李龙( Li L ). Master Dissertation of Taiyuan University of Technology, 2013.
[11]
Chakrabarty S , Mandia A K , Muralidharan B , Lee S , Bhattacharjee S. J. Phys: Condes. Mat., 2019, 32(13): 135704.
[12]
Hiraiwa K , Muranaga W , Iwayama S , Takeuchi T , Kamiyama S , Iwaya M , Akasaki I. J. Cryst. Growth, 2020, 531: 125357.
[13]
Gupta N D. J. Nanosct. Nanotechno., 2020, 20(6): 3939.
[14]
Lu Q , Marshall A , Krier A. Materials, 2019, 12(11): 1743.
[15]
Diao Y , Liu L , Xia S. Appl. Surf. Sci., 2020, 501: 144231.
[16]
Oe T , Matsuhiro K , Itatani T , Gorwadkar S , Kiryu S , Kaneko N. Phys. Status. Solidi. C, 2012, 9(2): 270.
[17]
Hu S , Lewis N S , Ager J W , Yang J , Mckone J R , Strandwitz N C. J. Phys. Chem. C, 2015, 119(43): 24201.
[18]
Tsai M J , Fahrenbruch A L , Bube R H. J. Appl. Phys., 1980, 51(5): 2696.
[19]
George S M. Chem. Rev., 2009, 110(1): 111.
[20]
Djokic S S , Ed. In Electrodeposition: Theory and Practice; Modern Aspects of Electrochemistry. Springer: New York, 2010.
[21]
Kanan M W , Surendranath Y , Nocera D G. Chem. Soc. Rev., 2009, 38(1): 109.
[22]
Lev O , Wu Z , Bharathi S , Glezer V , Modestov A , Gun J , Rabinovich L , Sampath S. , Chem. Mater. 1997, 9(11): 2354.
[23]
Yuan J , Tsujikawa S. J. Electrochem. Soc., 1995, 142(10): 3444.
[24]
Gerischer H. J. Electroanal. Chem., 1977, 82(1/2): 133.
[25]
Chen S , Wang L W. Chem. Mater., 2012, 24(18): 3659.
[26]
Nikolaychuk P A. Silicon, 2014, 6(2): 109.
[27]
Gronet C M , Lewis N S. Nature, 1982, 300(5894): 733.
[28]
Bansal A , Lewis N S. J. Phys. Chem. B, 1998, 102(21): 4058.
[29]
Hu S , Shaner M R , Beardslee J A , Lichterman M , Brunschwig B S , Lewis N S. Science, 2014, 344(6187): 1005.
[30]
Warren E L , McKone J R, Atwater H A, Gray H B, Lewis N S.Energy Environ. Sci., 2012, 5(11): 9653.
[31]
Roske C W , Popczun E J , Seger B , Read C G , Pedersen T , Hansen O , Vesborg P C K, Brunschwig B S, Schaak R E, Chorkendorff I, Gray H B, Lewis N S. J. Phys. Chem. Lett., 2015, 6(9): 1679.
[32]
Heller A , Vadimsky R G. Phys. Rev. Lett., 1981, 46(17): 1153.
[33]
Yokoyama D , Minegishi T , Maeda K , Katayma M , Kubota J , Yamada A , Konagai M , Domen K. Electrochem. Commun., 2010, 12(6): 851.
[34]
Lee M H , Takei K , Zhang J , Kapadia R , Zheng M , Chen Y , Nah J , Matthews T S , Chueh Y , Ager J W , Javey A. Angew. Chem. Int. Edit., 2012, 51(43): 10760.
[35]
Lin Y , Kapadia R , Yang J , Zheng M , Chen K , Hettick M , Yin X , Battaglia C , Sharp I D , Ager J W , Javey A. J. Phys. Chem. C, 2015, 119(5): 2308.
[36]
Kohl P A , Frank S N , Bard A J. J. Electrochem. Soc., 1977, 124(2): 225.
[37]
Hou B , Rezaeifar F , Qiu J , Zeng G , Kapadia R , Cronin S B. Appl. Phys. Lett., 2017, 111(14): 141603.
[38]
Kang D , Young J L , Lim H , Klein W , Chen H , Xi Y , Gai B , Deutsch T G , Yoon J. Nat. Energy, 2017, 2(5): 17043.
[39]
Kornblum L , Fenning D P , Faucher J , Hwang J , Boni A , Han M G , Morales-Acosta M D, Zhu Y, Altman E I, Lee M L, Ahn C H, Walker F J, Shao-Horn Y. Energy Environ. Sci., 2017, 10(1): 377.
[40]
Verlage E , Hu S , Liu R , Jones R J R, Sun K, Xiang C, Lewis N S, Atwater H A. Energy Environ. Sci., 2015, 8(11): 3166.
[41]
Wang Y , Schwartz J , Gim J , Hovden R , Mi Z. ACS Energy Lett., 2019, 4: 1541.
[42]
Zhou X , Liu R , Sun K , Chen Y , Verlage E , Francis S A , Lewis N S , Xiang C. ACS Energy Lett., 2016, 1(4): 764.
[43]
Aharon-Shalom E , Heller A. J. Electrochem. Soc., 1982, 129(12): 2865.
[44]
Chee K W A , Hu Y . Superlattece Microst., 2018, 119: 25.
[45]
May M M , Lewerenz H J , Lackner D , Dimroth F , Hannappel T. Nat. Commun. 2015, 6: 8286.
[46]
Nakato Y , Ohnishi T , Tsubomura H. Chem. Lett., 1975, 4(8): 883.
[47]
Harris L A , Gerstner M E , Wilson R H. J. Electrochem. Soc., 1977, 124(10): 1511.
[48]
Khaselev O , Turner J A. Electrochem. Solid-State Lett., 1999, 2(7): 310.
[49]
Tomkiewicz M , Woodall J M. J. Electrochem. Soc., 1977, 124(9): 1436.
[50]
Kainthla R C , Zelenay B , Bockris J O. J. Electrochem. Soc., 1987, 134: 841.
[51]
Kraft A , Görig B , Heckner K H. Sol. Energy Mat.Sol. C, 1994, 32(2): 151.
[52]
Hayashi T , Deura M , Ohkawa K. Japanese J. Appl. Phys., 2012, 51(11R): 112601.
[53]
Yamane S , Kato N , Kojima S , Imanishi A , Ogawa S , Yoshida N , Nonmura S , Nakato Y. J. Phys. Chem. C, 2009, 113(32): 14575.
[54]
Zeng J , Xu X , Parameshwaran V , Baker J , Bent S , Wong H S P, Clemens B. J. Electron. Mater., 2018, 47(2): 932.
[55]
Sun K , Kuang Y , Verlage E , Brunschwig B S , Tu C W , Lewis N S. Adv. Energy Mater., 2015, 5(11): 1402276.
[56]
Garner L E , Steirer K X , Young J L , Anderson N C , Miller E M , Tinkham J S , Deutsch T G , Sellinger A , Turener J A , Neale N R. ChemSusChem, 2017, 10(4): 767.
[1] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[2] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[3] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[4] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[5] 倪鑫, 周扬, 谭瑞琴, 况永波. 光电化学水分解中铁酸盐光阴极的制备与改性[J]. 化学进展, 2020, 32(10): 1515-1534.
[6] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[7] 周文理, 谢青季, 廉世勋. 太阳能光解水的光阳极材料[J]. 化学进展, 2013, 25(12): 1989-1998.