English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1351-1362 DOI: 10.7536/PC160326 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

基于分子印迹技术的电化学发光分析

杨钰昆1,2, 王小敏1,2, 方国臻1,2, 云雅光1,2, 郭婷1,2, 王硕1,2*   

  1. 1. 食品营养与安全教育部重点实验室 天津 300457;
    2. 天津科技大学食品工程与生物技术学院 天津 300457
  • 收稿日期:2016-03-01 修回日期:2016-05-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 王硕 E-mail:s.wang@tust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.31171683)资助

Electrochemiluminescence Analysis Based on Molecular Imprinting Technique

Yang Yukun1,2, Wang Xiaomin1,2, Fang Guozhen1,2, Yun Yaguang1,2, Guo Ting1,2, Wang Shuo1,2*   

  1. 1. Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin 300457, China;
    2. College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
  • Received:2016-03-01 Revised:2016-05-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31171683).
基于分子印迹技术的电化学发光分析是近几年刚刚发展起来的新型分析方法,兼具分子印迹技术与电化学发光方法两者的优点,具有高灵敏度、高选择性、可控性好、易于微型化和操作简单等特点,在生命科学、食品安全及环境监测等领域有着广泛的应用前景。本综述简要介绍了常用的电化学发光体系和基本原理,综述了近年来分子印迹电化学发光分析的主要研究进展,对不同类型分子印迹电化学分析的构建方法、原理及所构建方法的性能(包括灵敏度、选择性、检测范围和稳定性等)进行了评述。基于分子印迹技术的电化学发光分析主要可以分为三类:制备固态发光电极、非固态发光电极构建分子印迹电化学发光传感器和分子印迹固相萃取与电化学发光分析联用,其中制备固态发光电极用于构建分子印迹电化学发光传感器最有发展前景。最后,本综述也对分子印迹电化学发光分析今后的发展趋势和方向进行了展望。
Electrochemiluminescence (ECL) analysis based on molecular imprinting technique, as a new analysis method, has made great progress in recent years. Molecular imprinted ECL analysis owns the advantages of both ECL analysis and molecular imprinting technology, namely high sensitivity, high selectivity, good controllability, easy miniaturization and simple operation, suggesting a wide range of applications in the fields of life sciences, food safety and environmental monitoring. In this review, the common ECL systems and basic ECL principles are introduced in detail, and the research advances of molecular imprinted ECL analysis are reviewed. The ECL mechanism mainly includes annihilation type ECL mechanism and co-reactant type ECL mechanism, examples based on ECL mechanism are introduced. Construction procedure, principles and performance of different types of molecular imprinted ECL analysis, including sensitivity, selectivity, detection range and stability of the established methods, are remarked extensively. The development of molecular imprinted polymers (MIPs)-based ECL analysis could be divided into three types:MIPs-ECL sensor based on solid-state light-emitting electrode, MIPs-ECL sensor based on non-solid-state light-emitting electrode and MIPs based-solid phase extraction coupled with ECL analysis. Among the three types mentioned above, the fabrication of solid-state light-emitting electrode to establish molecular imprinted ECL sensor is the most promising direction, in which the organic combination of ECL light-emitting materials and molecular imprinted material is achieved. In addition, the outlook of future development directions and trends of molecular imprinted ECL analysis are discussed.

Contents
1 Introduction
2 Common ECL system and ECL mechanism
2.1 Annihilation type ECL mechanism
2.2 Co-reactant type ECL mechanism
3 Research advances of MIPs-based ECL analysis
3.1 MIPs-ECL sensor based on solid-state light-emitting electrode
3.2 MIPs-ECL sensor based on non-solid-state Light-emitting electrode
3.3 MIPs based-solid phase extraction coupled with ECL
4 Conclusion

中图分类号: 

()
[1] Richter M M. Chem. Rev., 2004, 104:3003.
[2] Miao W. Chem. Rev., 2008, 108:2506.
[3] Hu L, Xu G. Chem. Soc. Rev., 2010, 39:3275.
[4] Forster R J, P. Bertoncello and T. E. Keyes, Ann. Rev. Anal. Chem., 2009, 2:359.
[5] Muzyka K. Biosens. Bioelectron., 2014, 54:393.
[6] 李云辉(Li Y H). 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2006.
[7] 周敏(Zhou M). 西北师范大学博士论文(Doctoral Dissertation of Northwest Normal University), 2007.
[8] 郑立炎(Zheng L Y). 福州大学博士论文(Doctoral Dissertation of Fuzhou University), 2011.
[9] 陈国南(Chen G N), 林振宇(Lin Z Y). 世界科技研究与发展(World Sci-Tech R & D), 2004, 26:66.
[10] 陈国南(Chen G N),吴元兴(Wu Y X),段建平(Duan J P),张帆(Zhang F). 福州大学学报(自然科学版)(Journal of Fuzhou University (Natural Science Edition)), 1999, 27:1.
[11] Liu Z, Qi W, Xu G. Chem. Soc. Rev., 2015, 44:3117.
[12] Pauling L, Campbell D H. J. Exp. Med., 1942, 76:211.
[13] G. Wulff, Sarhan A. Angew. Chem. Int. Edit., 1972, 11(4):341.
[14] Vlatakis G, Andersson L I, Müller R, Mosbach K. Nature, 1993, 361:645.
[15] 张丽芬(Zhang L F), 曲靖师范学院学报(Journal of Qujing Normal University), 2005, 24(3):14.
[16] Pichon V, Chapuis-Hugon F. Anal. Chim. Acta, 2008, 622:48.
[17] 方国臻(Fang G Z). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2005.
[18] 马雄辉(Ma X H), 李建平(Li J P), 王超(Wang C), 徐国宝(Xu G B). 分析化学(Chinese J. Anal. Chem.), 2016, 44:152.
[19] Guo Z, Gai P, Hao T, Duan J, Wang S. J. Agr. Food Chem., 2011, 59:5257.
[20] Li S P, Guan H M, Xu G B, Tong Y J. Chinese J. Anal. Chem., 2015, 43:294.
[21] Kowalski S, Allard S, Scherf U. ACS Macro Lett., 2012, 1:465.
[22] Chu H, Guo W, Di J, Wu Y, Tu Y. Electroanal., 2009, 21:1630.
[23] Qiu B, Zhu X, Liu Y, Lin Z, Chen G. Electrochem. Commun., 2009, 11:254.
[24] Li J, Yang L, Luo S, Chen B, Li J, Lin H, Cai Q, Yao S. Anal. Chem., 2010, 82:7357.
[25] Chen X, Li M, Yi C, Tao Y, Wang X. Chromatographia, 2003, 58:571.
[26] Sun X, DuY, Zhang L, Dong S, Wang E. Anal. Chem., 2007, 79:2588.
[27] Liu X, Jiang H, Lei J, Ju H. Anal. Chem., 2007, 79:8055.
[28] Liu X, Ju H. Anal. Chem., 2008, 80:5377.
[29] Chang M M, Saji T, Bard A J. J. Am. Chem. Soc., 1977, 99:5399.
[30] Rubinstein I, Bard A J. J. Am. Chem. Soc., 1981, 103:512.
[31] White H S, Bard A J. J. Am. Chem. Soc., 1982, 104:6891.
[32] Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S. Sensor. Actuat. B-Chem., 2016, 222:264.
[33] Han C F, Shang Z Y, Zhang H H, Song Q J. Anal. Methods-UK, 2013, 5:6064.
[34] Shang Z Y, Han C F, Song Q J. Chinese J. Anal. Chem., 2014, 42:904.
[35] Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X. Analyst, 2012, 137:3644.
[36] Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S. Biosens Bioelectron., 2016, 79:561.
[37] Feng X, Gan N, Zhou J, Li T, Cao Y, Hu F, Yu H, Jiang Q. Electrochim. Acta, 2014, 139:127.
[38] Zhou J, Gan N, Hu F, Li T, Zhou H, Li X, Zheng L. Sensor. Actuat. B-Chem., 2013, 186:300.
[39] Chen S, Li A, Zhang L, Gong J. Anal. Chim. Acta, 2015, 896:68.
[40] Li S, Li J, Lin Q, Wei X. Analyst, 2015, 140:4702.
[41] Yang Y, Fang G, Wang X, Liu G, Wang S. Biosens. Bioelectron., 2016, 77:1134.
[42] Li J, Ma F, Wei X, Fu C, Pan H. Anal. Chim. Acta, 2015, 871:51.
[43] 魏小平(Wei X P), 谭艳季(Tan J P), 李建平(Li J P). 分析化学(Chinese Journal of Analytical Chemistry), 2015, 43:424.
[44] Li X, Li J, Yin W, Zhang L. J. Solid State Electr., 2014, 18:1815.
[45] Li H, Xie C, Fu X. Sensor. Actuat. B-Chem., 2013, 181:858.
[46] Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L. Biosens. Bioelectron., 2014, 54:199.
[47] Li J, Li S, Wei X, Tao H, Pan H. Anal. Chem., 2012, 84:9951.
[48] Li S, Tao H, Li J. Electroanal., 2012, 24:1664.
[49] Jiang X, Ding W, Luan C. Can. J. Chem., 2013, 91:656.
[50] Wang S, Wei J, Hao T, Guo Z. J. Electroanal. Chem., 2012, 664:146.
[51] B Huang, Zhou X, Chen J, G Wu, Lu X. Talanta, 2015, 142:228.
[52] Guo Z, Hao T, Shi L, Gai P, Duan J, Wang S, Gan N. Food Chem., 2012, 132:1092.
[53] 郝婷婷(Hao T T), 谢文婷(Xie W T), 李琴芬(Li Q F), 郭志勇(Guo Z Y). 分析试验室(Chinese Journal of Analysis Laboratory), 2012, 31(002):105.
[54] Lu J, Ge S, F Wan, Yu J. J. Sep. Sci., 2012, 35:320.
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[3] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[4] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[5] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[6] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[7] 谢晓纹, 马晓国, 郭丽慧. 分子印迹聚合物用于环境内分泌干扰物的检测与去除[J]. 化学进展, 2019, 31(12): 1749-1758.
[8] 杨良嵘, 邢慧芳, 屈虹男, 于杰淼, 刘会洲. 外场强化环境响应固相萃取技术[J]. 化学进展, 2019, 31(11): 1615-1622.
[9] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[10] 明魏娜, 王晓艳, 明永飞, 李金花, 陈令新. 核-壳型分子印迹聚合物的制备与应用[J]. 化学进展, 2016, 28(4): 552-563.
[11] 张现峰, 杜学忠. 蛋白表面分子印迹技术[J]. 化学进展, 2016, 28(1): 149-162.
[12] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[13] 朱德斌*, 马文革, 邢晓波 . 电化学发光分析方法在核酸检测中的应用[J]. 化学进展, 2012, 24(12): 2367-2373.
[14] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[15] 吕春晖, 王硕, 方国臻, 汤轶伟, 王岁楼. 分子印迹在仿生免疫吸附分析中的应用[J]. 化学进展, 2012, 24(05): 844-851.