English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1515-1534 DOI: 10.7536/PC200334 前一篇   后一篇

• 综述 •

光电化学水分解中铁酸盐光阴极的制备与改性

倪鑫1,2, 周扬2, 谭瑞琴1,**(), 况永波2,**()   

  1. 1.宁波大学信息科学与工程学院 宁波 315211
    2.中国科学院宁波材料技术与工程研究所 宁波 315201
  • 收稿日期:2020-04-01 修回日期:2020-05-29 出版日期:2020-10-24 发布日期:2020-07-02
  • 通讯作者: 谭瑞琴, 况永波
  • 基金资助:
    *国家自然科学基金项目(21805298); 国家自然科学基金项目(21905288); 国家自然科学基金项目(51904288); 宁波市科技创新2025重大专项(2018B10056); 宁波市3315项目和宁波大学王宽诚基金资助

Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting

Xin Ni1,2, Yang Zhou2, Ruiqin Tan1,**(), Yongbo Kuang2,**()   

  1. 1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
    2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2020-04-01 Revised:2020-05-29 Online:2020-10-24 Published:2020-07-02
  • Contact: Ruiqin Tan, Yongbo Kuang
  • About author:
    **e-mail:(Yongbo Kuang)
  • Supported by:
    National Natural Science Foundation of China(21805298); National Natural Science Foundation of China(21905288); National Natural Science Foundation of China(51904288); Ningbo Major Special Projects of the Plan “Science and Technology Innovation 2025”(2018B10056); Ningbo 3315 Program, and K.C. Wong Magna Fund in Ningbo University.

由n型半导体光阳极和p型半导体光阴极组成的无偏压光电化学电池通过太阳能可以将水直接转化为高能量密度的氢气,为解决太阳能利用过程中存在的间歇性和储存问题提供了一种潜在的经济有效的解决途径。金属氧化物具有低成本和易制备等优势,相比于发展较成熟的n型光阳极金属氧化物材料,传统的p型光阴极金属氧化物材料由于金属离子易受到光电腐蚀的影响,光电极寿命的提升是个很大的挑战。作为新型的金属氧化物光阴极材料,铁酸盐具有合适的带隙、较好的光稳定性、较正的起始电位以及较低的制备成本,正在成为光电化学电池实际应用中的有力竞争者。本文阐述了光电化学水分解的基本原理与提升光电极性能的一般方法,总结了近年来颇受关注的代表性铁酸盐光阴极材料CuFeO2、CaFeO4与LaFeO3在制备方法、元素掺杂以及表面修饰等方面取得的重要进展,并对铁酸盐光阴极的未来发展趋势做了展望。

A non-biased photoelectrochemical (PEC) cell composed of both an n-type semiconductor photoanode and a p-type semiconductor photocathode offers a cost-effective route to convert water directly into high energy density hydrogen using solar energy, which helps address the intermittency and storage problem of solar energy during utilization. Metal oxide semiconductors have the advantages of low cost and facile preparation. Compared with well-developed n-type metal oxide photoanode materials, the stability of conventional p-type metal oxide photocathode materials still remains a challenge due to the photoelectrochemical reduction of metallic ions. As a new type of metal oxide photocathodes, ferrite photocathodes have recently emerged as competitive candidates for practical applications due to the appropriate band gaps, better photostability, higher onset potential and relatively low preparation costs. In this review, the fundamentals of PEC water splitting and common methods for improving performance of photoelectrodes are first introduced, and the recent progress of representative CuFeO2, CaFe2O4 and LaFeO3 photocathodes are summarized, including their fabrication methods, elements doping and surface modifications. Finally, perspectives on the future development of ferrite photocathodes are also discussed.

Contents

1 Introduction

2 Fundamentals of PEC water splitting

2.1 Composition and configuration of a non-biased PEC cell

2.2 Process of PEC water splitting

2.3 Semiconductor-electrolyte junction

2.4 Requirements for band gaps and positions of photoelectrode materials

3 Methods for improving conversion efficiency of photoelectrodes

3.1 Enhancing generation rates of carriers

3.2 Promoting bulk transport and separation efficiency of carriers

3.3 Accelerating surface injection efficiency of carriers

4 Recent progress of ferrite photocathodes

4.1 Recent status of PEC water splitting materials

4.2 CuFeO2

4.3 CaFe2O4

4.4 LaFeO3

5 Conclusion and outlook

()
图1 (a)由光阳极与光阴极构成的无偏压PEC电池示意图,(b)无偏压PEC电池的构型[11]
Fig.1 (a) Schematic of a non-biased PEC cell comprising a photoanode and a photocathode, (b) configurations of a non-biased PEC cell[11]
图2 光阴极实现水分解的过程[15]
Fig.2 Process of PEC water splitting by photocathodes[15]
图3 三种情况下n型半导体/电解液接触时的能带图。(a)平衡前,(b)黑暗时,(c)光照时[18]
Fig.3 The band energetics of an n-type semiconductor/electrolyte contact in three cases. (a) Before equilibrium, (b) equilibrium in dark, (c) illuminated[18]
图4 (a)带隙对理论转换效率的影响[21],(b)能带位置及电极光电流对PEC电池工作电流的影响[22]
Fig.4 (a) Effects of band gaps on theoretical conversion efficiency[21], (b) effects of band positions and electrode photocurrents on working current of a PEC cell [22]
图5 半导体/等离子体纳米结构中发生的LSPR激发诱导过程的时间演变示意图。(a)LSPR振荡,(b)等离子体激发的共振能量转移(PIRET),(c)散射,(d)电子/空穴产生,(e)等离子体加热,(f)热电子注入,(g)直接电子注入[36]
Fig.5 Schematic showing the time evolution of LSPR-excitation-induced processes occurring in a semiconductor/plasmonic nanostructure. (a) LSPR oscillation, (b) Plasmon-induced resonant energy transfer (PIRET), (c) scattering, (d) electron/hole generation, (e) plasmonic heating, (f) hot electron injection, (g) direct electron injection[36]
图6 n型半导体形成的半导体电解液结结构图[17]
Fig.6 Structure of a semiconductor-electrolyte junction formed by n-type semiconductor [17]
图7 纳米结构光电极中的光捕获与载流子传输。(a)零维纳米晶体,(b)一维纳米结构,(c)二维纳米片,(d)三维纳米结构[56]
Fig.7 Light trapping and charge transport in photoelectrodes with nanostructure. (a) 0D nanocrystals, (b) 1D nanostructures, (c) 2D nanosheets, (d) 3D nanostructures[56]
图8 (a)由电沉积法制备CuFeO2电极的SEM图及其,(b)氧还原(蓝)与水还原(黑)下的光电性能[135],(c)由溶胶凝胶旋涂法制备CuFeO2电极的SEM图及其,(d)氧还原(蓝)与水还原(红)下的光电性能[136]
Fig.8 (a) SEM images and (b) PEC performance for oxygen (blue) and H2O (black) reduction of CuFeO2 electrode prepared by electrodeposition[135], (c) SEM images and (d) PEC performance for oxygen (blue) and H2O (red) reduction of CuFeO2 electrode prepared by sol-gel spin coating[136]
图9 (a)CuAlO2支撑层的SEM图,(b)CuAlO2/ CuFeO2电极的SEM图,(c)CuAlO2/ CuFeO2电极中可能存在的光生载流子传输途径,(d)CuAlO2/ CuFeO2电极的能带示意图[138]
Fig.9 (a) SEM image of CuAlO2 Scaffold, (b) SEM image of CuAlO2/CuFeO2 electrode, (c) possible pathways of photogenerated charges inside a CuAlO2/CuFeO2 electrode, (d) energy diagram of the host-guest CuAlO2/CuFeO2 electrode[138]
图10 (a,b)PE-SiO2@CuFeO2@CuAlO2电极在有无NaOH处理情况下,载流子的传输途径及能带图,(c)氧还原下的光电性能 [140]
Fig.10 (a,b) Possible pathways of photogenerated charges and energy diagram, (c) PEC performance for O2 reduction of a PE-SiO2@CuFeO2@CuAlO2 electrode with/without NaOH treatment [140]
图11 (a)IO CuFeO2电极正面和侧面的SEM图,(b)IO/Planar CuFeO2电极的光吸收和漫反射图,(c)IO/Planar CuFeO2电极在氧还原条件下的光电性能,(d)IO CuFeO2电极随时间变化的析氢曲线[141]
Fig.11 (a) SEM images of top and side view of IO CuFeO2, (b) absorption and diffusive reflectance of IO/Planar CuFeO2 electrode, (c) PEC performance of IO/Planar CuFeO2 electrode for O2 reduction, (d) time course of H2 evolution upon the IO CuFeO2 electrode[141]
图12 CuFeO2的基本光电化学信息[142]
Fig.12 Basic PEC information of CuFeO2[142]
图13 (a)不同温度(1100 ℃和1200 ℃)下以Pt为基底的CaFe2O4电极的光电性能,(b)CuFeO2与TiO2电极装置随时间变化的产氢与产氧曲线[126],(c)由PLD制备CaFe2O4电极的SEM图,(d)紫外可见光吸收曲线图[150]
Fig.13 (a) PEC performance of CaFe2O4 electrodes prepared with Pt substrate at 1100 ℃ and 1200 ℃,(b) time course of H2 and O2 evolution from CaFe2O4 and TiO2 electrodes system [126] , (c) SEM images and, (d) UV-vis spectra of CaFe2O4 electrode prepared by PLD[150]
图14 (a)TiO2修饰的CaFe2O4电极在可见光下的载流子传输机理,(b)原电极与TiO2修饰的CaFe2O4电极在稳定性测试后的SEM图,(c)电极在不同光源下的光电性能,(d)原电极与TiO2修饰的CaFe2O4电极在1.2 V偏压下随时间变化的光电流曲线,(e)CaFe2O4与Pt电极装置随时间变化的产氢与产氧曲线[151]
Fig.14 (a) Charge transfer mechanism for TiO2-coated CaFe2O4 electrode under visible light illumination, (b) SEM images of pristine CaFe2O4 and TiO2-coated CaFe2O4 electrodes after stability test, (c) PEC performance of pristine CaFe2O4 and TiO2-coated CaFe2O4 electrodes under different light illumination, (d) current-time plot of pristine CaFe2O4 and TiO2-coated CaFe2O4 electrodes applying an external bias of 1.2 V, (e) time evolution of H2 and O2 production from TiO2-coated CaFe2O4 and Pt electrodes system[151]
图15 Ag掺杂对CaFe2O4电极光电性能的影响[152]
Fig.15 The effect of Ag doping on PEC performance of CaFe2O4 electrodes[152]
图16 (a,b)Ca2Fe2O5电极正面和侧面SEM图,(c,d)Ca2Fe2O5电极的氧还原性能[153]
Fig.16 (a,b) SEM images of top and side view of Ca2Fe2O5 electrode, (c,d) PEC performance of Ca2Fe2O5 electrode for O2 reduction[153]
图17 LaFeO3电极在不同制备方法下的SEM图与光电性能。(a,b)激光脉冲沉积[160],(c,d)电沉积[161],(e,f)喷雾分解[162]
Fig.17 SEM images and PEC performance of LaFeO3 electrodes prepared by different methods. (a,b) PLD[160], (c,d) electrodeposition[161], (e,f) spray pyrolysis[162]
图18 (a)3% K掺杂LaFeO3电极的SEM图, (b) LaFeO3(黑)与3% K掺杂LaFeO3(蓝)电极的光电性能, (c) LaFeO3(黑)与3% K掺杂LaFeO3(红)的电子能带结构图, (d) 3% K掺杂的LaFeO3的自旋密度图[164]
Fig.18 (a) SEM image of 3% K-doped LaFeO3 electrode, (b) PEC performance and, (c) electronic band structures of pristine LaFeO3(black) and 3% K-doped LaFeO3(blue, red), (d) spin density map of 3% K-doped LaFeO3[164]
图19 (a)直径为40~80 nm的Ag纳米颗粒的归一化散射截面,(b)LaFeO3与LaFeO3-Ag(0.19 mmol)电极的光吸收曲线,(c)LaFeO3电极与不同Ag量修饰的LaFeO3-Ag电极的光电性能,(d)LaFeO3电极与不同Ag量修饰的LaFeO3-Ag电极的析氢测试[165]
Fig.19 (a) Normalized scattering cross-sections of Ag nanoparticles for diameters of 40~80 nm, (b) absorbance spectra of LaFeO3 and LaFeO3-Ag (0.19 mmol) electrode, (c) PEC performance of plain LaFeO3 and LaFeO3-Ag electrodes with varying Ag concentrations concentrations, (d) hydrogen evolution test of plain LaFeO3 and LaFeO3-Ag electrodes with varying Ag concentrations [165]
图20 (a)P1*@LaFeO3的能带图,(b)LaFeO3与P1*@LaFeO3电极的氧还原性能,(c)LaFeO3、P1*@LaFeO3与 (NiP+P1*)@LaFeO3电极的水还原性能,(d)水还原条件下,LaFeO3、P1*@LaFeO3与 (NiP+P1*)@LaFeO3电极的稳定性测试[167]
Fig.20 (a) energy diagram of P1*@LaFeO3, (b) PEC performance of LaFeO3 and P1*@LaFeO3 electrodes for O2 reduction, (c) PEC performance of LaFeO3, P1*@LaFeO3 and (NiP+P1*)@LaFeO3 electrodes for H2O reduction, (d)stability test of LaFeO3, P1*@LaFeO3 and (NiP+P1*)@LaFeO3 electrodes for H2O reduction [167]
表1 近年来铁酸盐光阴极电极制备方法与光电性能汇总表
Table 1 Summary of fabrication methods and PEC performance of reported ferrite photocathodes
Photocathode Fabrication method Modification PEC performance(AM 1.5G) ref
SQ〗FTO/CuFeO2(Ar:650 ℃-1 h) Electrodeposition Fabrication -0.085(H2O), -0.16(O2) mA/cm2 @0.6 V vs. RHE, 1 M NaOH 135
SQ〗FTO/CuFeO2/AZO/TiO2/ Pt
(Ar: 700 ℃-12 h)
Sol-gel spin coating Fabrication +
Heterojunction
-0.4 mA/cm2(H2O) @0 V vs. RHE, 0.5 M Na2SO4, Stability(O2): >40 h 136
FTO/CuFeO2/NiFe LDH+RGO
(Ar: 600 ℃-10 h)
Sol-gel spin coating Post-treatment +
Cocatalyst
-2.4 mA/cm2 (H2O) @0.4 V vs. RHE, 1 M NaOH 137
FTO/CuAlO2/ CuFeO2
(Ar: 700 ℃-12 h)
Sol-gel: drop coating + Spin coating Host-guest structure -2.2 mA/cm2(O2) @0.35 V vs. RHE, 1 M NaOH 138
FTO/SiO2/CuFeO2
(N2: 800 ℃-12 h)
Sol-gel: Rubbing Nanostructure -0.07(H2O), -0.2(O2) mA/cm2 @0.6 V vs. RHE, 1 M NaOH 139
FTO/SiO2/CuFeO2/CuAlO2
(Ar: 700 ℃-12 h)
Sol-gel: Rubbing Host-guest structure -1.09 mA/cm2(O2) @0.6 V vs. RHE, 1 M NaOH 140
FTO/CuFeO2(Inverse Opal)
/C60/CoFe LDH(Ar:600 ℃-2 h)
Sol-gel: Template method Nanostructure -4.86 mA/cm2(H2O) @0 V vs. RHE, 1 M NaOH 141
FTO /CuFeO2
(Ar: 600 ℃-6 h)
Co-sputtering Fabrication -0.05(H2O), -0.85 mA/cm2 (Na2S2O8)@0.4 V vs. RHE, 1 M NaOH 143
CaFe2O4
(Air: 1200 ℃; O2: 1000 ℃)
Tablet calcination Fabrication -0.2 mA/cm2(H2O) @-0.6 V vs. SCE, 0.25 M K2SO4(pH=6), 500 W Xenon lamp 148
Pt/ CaFe2O4(Air: 1200 ℃-2 h) Sol-gel: Drop coating + Calcination Fabrication -1 mA/cm2 @0.2 V vs. RHE, 0.1 M NaOH, 500 W Xenon lamp 126
Pt/CaFe2O4+Ca2Fe2O5
(Air: 1200 ℃-2 h)
Sol-gel: Drop coating + Calcination Heterogeneous -0.85 mA/cm2 @-0.8 V vs. Ag/AgCl, 0.1 M NaOH, 500 W Xenon lamp 149
FTO/ CaFe2O4
(Deposition temperature: 550 ℃)
PLD Fabrication -0.117 mA/cm2 @0.21 V vs. RHE, 0.1 M Na2SO4, 500 W Xenon lamp 150
Pt/CaFe2O4/TiO2(Air: 1200 ℃-2 h) Sol-gel: Drop coating + Calcination Heterojunction Onset potential: 1.6 V vs. RHE, Stability(H2O): >14 h 151
FTO/Ag-CaFe2O4(O2: 650 ℃-2 h) Magnetron sputtering Metal doping -0.07 mA/cm2 @0 V vs. Ag/AgCl, 0.2 M K2SO4, 300 W Xenon lamp (300~800 nm), Stability(O2): >1 h 152
FTO/ Ca2Fe2O5(Air: 650 ℃-2 h) Electrodeposition Fabrication +
Nanostructure
-0.05(H2O), -0.2(O2) mA/cm2 @0.6 V vs. RHE, 0.5 M H3BO3(pH=11) 153
ITO/ LaFeO3(Deposition temperature: 650 ℃) PLD Fabrication -0.0645 mA/cm2 @0 V vs. RHE, 0.5 M H2SO4, Stability(H2O): >120 h 160
FTO/ LaFeO3(Air: 600 ℃-3 h) Electrodeposition Fabrication +
Nanostructure
-0.1 mA/cm2(O2) @0.71 V vs. RHE, 0.1 M NaOH, Stability(O2): >1 h 161
FTO/ LaFeO3(Air: 550 ℃-3 h) Spray pyrolysis Fabrication -0.16 mA/cm2(H2O) @0.26 V vs. RHE, 0.1 M NaOH, Stability(H2O): 20% loss in 21 h 162
FTO/Zn or Mg-LaFeO3
(Air: 640 ℃-2 h)
Sol-gel spin coating Metal doping -0.1 mA/cm2(O2) @0.6 V vs. RHE, 0.1 M NaOH 163
FTO/K-LaFeO3(Air: 600 ℃-6 h) Electrodeposition Metal doping -0.015(H2O), -0.268 mA/cm2 (O2) @0.6 V vs. RHE, 0.1 M KOH, Stability(O2): >16 h 164
FTO/ LaFeO3/Ag (Air: 550 ℃-3 h) Spray pyrolysis LSPR -0.074 mA/cm2@0.6 V vs. RHE, 0.1 M NaOH, Stability: >24 h 165
FTO/ LaFeO3/Ni (Air: 550 ℃-3 h) Spray pyrolysis LSPR -0.066 mA/cm2 @0.6 V vs. RHE, 0.1 M NaOH, Stability: >24 h 166
FTO/ LaFeO3/ P1*+NiP
(Air: 600 ℃-3 h)
Spray pyrolysis Dye sensitization + Cocatalyst -0.02(H2O), -0.19 mA/cm2(O2) @0.63 V vs. RHE, 1 M KOH 167
[1]
Esswein A J, McMurdo M J, Ross P N, BellA T, Tilley T D. J. Phys. Chem. C, 2009,113(33):15068.
[2]
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Chem.Rev., 2010,110(11):6446.
[3]
Fujishima A, Honda K. Nature, 1972,238(5358):37.

URL     pmid: 12635268
[4]
Kuang Y B, Jia Q X, Ma G J, Hisatomi T, Minegishi T, Nishiyama H, Nakabayashi M, Shibata N, Yamada T, Kudo A, Domen K. Nat. Energy, 2016,2(1):16191.
[5]
Kim T W, Choi K S. Science, 2014,343(6174):990.

URL     pmid: 24526312
[6]
Kay A, Cesar I, Grätzel M. J. Am. Chem. Soc., 2006,128(49):15714.

URL     pmid: 17147381
[7]
Li M Y, Yang Y, Ling Y C, Qiu W T, Wang F X, Liu T Y, Song Y, Liu X X, Fang P P, Tong Y X, Li Y. Nano Lett., 2017,17(4):2490.

URL     pmid: 28334530
[8]
Hautier G, Miglio A, Ceder G, Rignanese G M, Gonze X. Nat. Commun., 2013,4:2292.

URL     pmid: 23939205
[9]
Pan L F, Kim J H, Mayer M T, Son M K, Ummadisingu A, Lee J S, Hagfeldt A, Luo J S, Grätzel M. Nat. Catal., 2018,1(6):412.
[10]
Kobayashi H, Sato N, Orita M, Kuang Y B, Kaneko H, Minegishi T, Yamada T, Domen K. Energy Environ. Sci., 2018,11(10):3003.
[11]
Kuang Y B, Yamada T, Domen K. Joule, 2017,1(2):290.
[12]
Hu S, Xiang C X, Haussener S, Berger A D, Lewis N S. Energy Environ. Sci., 2013,6(10):2984.
[13]
Jiang F, Harada T, Kuang Y B, Minegishi T, Domen K, Ikeda S. J. Am. Chem. Soc., 2015,137(42):13691. doi: 10.1021/jacs.5b09015

URL     pmid: 26479423
[14]
Kaneko H, Minegishi T, Nakabayashi M, Shibata N, Kuang Y B, Yamada T, Domen K. Adv. Funct. Mater., 2016,26(25):4570.
[15]
Huang Q, Ye Z, Xiao X D. J. Mater. Chem. A, 2015,3(31):15824.
[16]
Peter L M, Chem. Rev., 1990,90(5):753.
[17]
Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Energy Environ. Sci., 2013,6(2):347.
[18]
Jiang C R, Moniz S J, Wang A Q, Zhang T, Tang J W. Chem. Soc. Rev., 2017,46(15):4645.
[19]
Kudo A, Miseki Y. Chem. Soc. Rev, 2009,38(1):253.
[20]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K, Jaramillo T F. Science, 2017,355(6321).

URL     pmid: 28082577
[21]
Wang S C, Liu G, Wang L Z. Chem. Rev., 2019,119(8):5192. doi: 10.1021/acs.chemrev.8b00584
[22]
Lee D K, Lee D, Lumley M A, Choi K S. Chem. Soc. Rev., 2019,48(7):2126.

URL     pmid: 30499570
[23]
Dotan H, Sivula K, Grätzel M, Rothschild A, Warren S C. Energy Environ. Sci., 2011,4(3):958.
[24]
Takanabe K. ACS Catal., 2017,7(11):8006.
[25]
Chen Z B, Dinh H N, Miller E. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. NY: Springer, 2013. 49.
[26]
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. NY: John Wiley & Sons, 2008. 1.
[27]
Li R G, Li C. Adv. Catal., 2017,60:1.
[28]
Sivula K, van de Krol R. Nat. Rev. Mater., 2016,1(2):15010.
[29]
Yu J Q, Kudo A. Adv. Funct. Mater., 2006,16(16):2163.
[30]
Niishiro R, Takano Y, Jia Q X, Yamaguchi M, Iwase A, Kuang Y B, Minegishi T, Yamada T, Domen K, Kudo A. Chem. Commun., 2017,53(3):629.
[31]
Matsuo H, Katayama M, Minegishi T, Yamada T, Kudo A, Domen K. J. Appl. Phys., 2019,126(9):094901.
[32]
Kölbach M, Pereira I J, Harbauer K, Plate P, Höflich K, Berglund S P, Friedrich D, van de Krol R, Abdi F F. Chem. Mater., 2018,30(22):8322.
[33]
Zhu Z H, Sarker P, Zhao C Q, Zhou L T, Grimm R L, Huda M N, Rao P M. ACS Appl. Mater. Interfaces, 2017,9(2):1459.
[34]
Higashi M, Domen K, Abe R. J. Am. Chem. Soc., 2012,134(16):6968.
[35]
Higashi M, Domen K, Abe R. Energy Environ. Sci., 2011,4(10):4138.
[36]
Mascaretti L, Dutta A, Kment S, Shalaev V M, Boltasseva A, Zboril R, Naldoni A. Adv. Mater., 2019,31(31):1805513.
[37]
Ingram D B, Linic S. J. Am. Chem. Soc., 2011,133(14):5202. doi: 10.1021/ja200086g

URL     pmid: 21425795
[38]
Wang T, Lv R, Zhang P, Li C J, Gong J L. Nanoscale, 2015,7(1):77.

URL     pmid: 25113466
[39]
Kim J K, Shi X J, Jeong M J, Park J, Han H S, Kim S H, Guo Y, Heinz T F, Fan S H, Lee C L Park J H, Zheng X L. Adv. Energy Mater., 2018,8(5):1701765.
[40]
Peerakiatkhajohn P, Yun J H, Chen H J, Lyu M Q, Butburee T, Wang L Z. Adv. Mater., 2016,28(30):6405.

URL     pmid: 27167876
[41]
Thimsen E, Formal L F, Grätzel M, Warren S C. Nano Lett., 2011,11(1):35.

URL     pmid: 21138281
[42]
Zhou M, Wu H B, Bao J, Liang L, Lou X W, Xie Y. Angew. Chem. Int. Ed., 2013,52(33):8579.
[43]
Zhou M, Bao J, Xu Y, Zhang J J, Xie J F, Guan M L, Wang C L, Wen L Y, Lei Y, Xie Y. ACS Nano, 2014,8(7):7088. doi: 10.1021/nn501996a

URL     pmid: 24911285
[44]
Mohapatra S K, John S E, Banerjee S, Misra M. Chem. Mater., 2009,21(14):3048.
[45]
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Nano Lett., 2006,6(2):215.

URL     pmid: 16464037
[46]
Qiu Y C, Leung S F, Zhang Q P, Hua B, Lin Q F, Wei Z H, Tsui K H, Zhang Y G, Yang S H, Fan Z Y. Nano Lett., 2014,14(4):2123. doi: 10.1021/nl500359e

URL     pmid: 24601797
[47]
Li J K, Qiu Y C, Wei Z H, Lin Q F, Zhang Q P, Yan K Y, Chen H N, Xiao S, Fan Z Y, Yang S H. Energy Environ. Sci., 2014,7(11):3651.
[48]
Ye M D, Wen X R, Wang M Y, Iocozzia J, Zhang N, Lin C J, Lin Z Q. Mater. Today, 2015,18(3):155.
[49]
Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F. Nano Lett., 2012,12(3):1503. doi: 10.1021/nl2042968

URL     pmid: 22364360
[50]
Su J Z, Feng X J, Sloppy J D, Guo L J, Grimes C A. Nano Lett., 2011,11(1):203.

URL     pmid: 21114333
[51]
Kuang Y B, Jia Q X, Nishiyama H, Yamada T, Kudo A, Domen K. Adv. Energy Mater., 2016,6(2):1501645. doi: 10.1002/aenm.201501645
[52]
Cornuz M, Grätzel M, Sivula K. Chem. Vap. Deposition, 2010,16(10/12):291.
[53]
Vayssieres L, Beermann N, Lindquist S E, Hagfeldt A. Chem. Mater., 2001,13(2):233.
[54]
Li Y B, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K. Adv. Mater., 2013,25(1):125.

URL     pmid: 22987610
[55]
Iordanova N, Dupuis M, Rosso K M. J. Chem. Phys., 2005,122(14):144305.

URL     pmid: 15847520
[56]
Li J T, Wu N Q. Catal. Sci. Technol, 2015,5(3):1360.
[57]
Wang X N, Long R, Liu D, Yang D, Wang C M, Xiong Y J. Nano Energy, 2016,24:87.
[58]
Ansari S A, Cho M H. Sci. Rep, 2016,6:25405.

URL     pmid: 27146098
[59]
Ohno T, Mitsui T, Matsumura M. Chem. Lett., 2003,32(4):364.
[60]
Pilli S K, Furtak T E, Brown L D, Deutsch T G, Turner J A, Herring A M. Energy Environ. Sci., 2011,4(12):5028.
[61]
Zhong D K, Choi S, Gamelin D R. J. Am. Chem. Soc., 2011,133(45):18370. doi: 10.1021/ja207348x

URL     pmid: 21942320
[62]
Meng X Y, Qin G W, Goddard W A, Li S, Pan H J, Wen X H, Qin Y K, Zuo L. J. Phys. Chem. C, 2013,117(8):3779.
[63]
Yuan Y F, Gu J W, Ye K H, Chai Z S, Yu X, Chen X B, Zhao C X, Zhang Y M, Mai W J. ACS Appl. Mater. Interfaces, 2016,8(25):16071. doi: 10.1021/acsami.6b04142

URL     pmid: 27275649
[64]
Wang L, Lee C Y, Schmuki P. Electrochem. Commun., 2013,30:21.
[65]
Berglund S P, Rettie A J E, Hoang S, Mullins C B. Phys. Chem. Chem. Phys., 2012,14(19):7065.

URL     pmid: 22466715
[66]
Kim E S, Nishimura N, Magesh G, Kim J Y, Jang J W, Jun H, Kubota J, Domen K, Lee J S. J. Am. Chem. Soc., 2013,135(14):5375.

URL     pmid: 23463951
[67]
Hou Y, Zuo F, Dagg A, Feng P Y. Angew. Chem. Int. Ed., 2013,52(4):1248.
[68]
Lin Y J, Xu Y, Mayer M T, Simpson Z I, McMahon G, Zhou S, Wang D W. J. Am. Chem. Soc., 2012,134(12):5508.

URL     pmid: 22397372
[69]
Peng Q, Wang J, Feng Z J, Du C, Wen Y W, Shan B, Chen R. J. Phys. Chem. C, 2017,121(24):12991. doi: 10.1021/acs.jpcc.7b01817
[70]
Rao P M, Cai L L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P D, Zheng X L. Nano Lett., 2014,14(2):1099. doi: 10.1021/nl500022z

URL     pmid: 24437363
[71]
Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Nat. Mater., 2011,10(6):456.

URL     pmid: 21552270
[72]
Liu Q T, Liu D Y, Li J M, Kuang Y B. Front. Phys, 2019,14(5):53403.
[73]
Ma Z Z, Hou H L, Song K, Fang Z, Wang L, Gao F M, Yang W Y, Tang B, Kuang Y B. Chem. Eng. J, 2020,379: UNSP 122266.
[74]
Kim T W, Ping Y, Galli G A, Choi K S. Nat. Commun, 2015,6:8769. doi: 10.1038/ncomms9769

URL     pmid: 26498984
[75]
Cooper J K, Scott S B, Ling Y C, Yang J H, Hao S J, Li Y, Toma F M, Stutzmann M, Lakshmi K, Sharp I D. Chem. Mater., 2016,28(16):5761.
[76]
Jang J W, Friedrich D, Müller S, Lamers M, Hempel H, Lardhi S, Cao Z, Harb M, Cavallo L, Heller R, Eichberger R, van de Krol R, Abdi F F. Adv. Energy Mater., 2017,7(22):1701536.
[77]
Wang G M, Ling Y C, Lu X H, Qian F, Tong Y X, Zhang J Z, Lordi V, Rocha Leao C, Li Y. J. Phys. Chem. C, 2013,117(21):10957.
[78]
Wang Z L, Mao X M, Chen P, Xiao M, Monny S A, Wang S C, Konarova M, Du A J, Wang L Z. Angew. Chem. Int. Ed., 2019,58(4):1030.
[79]
Ling Y C, Wang G M, Reddy J, Wang C C, Zhang J Z, Li Y. Angew. Chem. Int. Ed., 2012,51(17):4074.
[80]
Freitas A L M, Carvalho W M, Souza F L. J. Mater. Res., 2015,30(23):3595.
[81]
Zhong Y J, Li Z S, Zhao X, Fang T, Huang H T, Qian Q F, Chang X F, Wang P, Yan S C, Yu Z T, Zou Z G. Adv. Funct. Mater., 2016,26(39):7156. doi: 10.1002/adfm.v26.39
[82]
Huang H T, Feng J Y, Fu H W, Zhang B W, Fang T, Qian Q F, Huang Y Z, Yan S C, Tang J W, Li Z S, Zou Z G. Appl. Catal. B-Environ., 2018,226:111.
[83]
Feng J Y, Huang H T, Fang T, Wang X, Yan S C, Luo W J, Yu T, Zhao Y X, Li Z S, Zou Z G. Adv. Funct. Mater., 2019,29(11):1808389.
[84]
Zhang Z, YatesJ T. Chem. Rev., 2012,112(10):5520.

URL     pmid: 22783915
[85]
Hisatomi T, Brillet J, Cornuz M, Le Formal F, Tétreault N, Sivula K, Grätzel M. Faraday Discuss., 2012,155:223.

URL     pmid: 22470976
[86]
Le Formal F, Pendlebury S R, Cornuz M, Tilley S D, Grätzel M, Durrant J R. J. Am. Chem. Soc., 2014,136(6):2564.

URL     pmid: 24437340
[87]
Le Formal F, Grätzel M, Sivula K. Adv. Funct. Mater., 2010,20(7):1099.
[88]
Byun S, Kim B, Jeon S, Shin B. J. Mater. Chem. A, 2017,5(15):6905.
[89]
Hisatomi T, Dotan H, Stefik M, Sivula K, Rothschild A, Grätzel M, Mathews N. Adv. Mater., 2012,24(20):2699. doi: 10.1002/adma.201104868

URL     pmid: 22508522
[90]
Stefik M, Cornuz M, Mathews N, Hisatomi T, Mhaisalkar S, Grätzel M. Nano Lett., 2012,12(10):5431. doi: 10.1021/nl303101n

URL     pmid: 22974097
[91]
Abe R, Takata T, Sugihara H, Domen K. Chem. Lett., 2005,34(8):1162.
[92]
Su J, Minegishi T, Domen K. J. Mater. Chem. A, 2017,5(25):13154.
[93]
Long M C, Cai W M, Kisch H. J. Phys. Chem. C, 2008,112(2):548.
[94]
Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. J. Am. Chem. Soc., 2012,134(9):4294. doi: 10.1021/ja210755h324c7a1d-e3c1-4312-9f0e-5440e44ea68f
[95]
Le Formal F, Tétreault N, Cornuz M, Moehl T, Grätzel M, Sivula K. Chem. Sci., 2011,2(4):737. doi: 10.1039/c0sc00578afb61ed12-f223-411a-b2da-1ee7daa78c9b
[96]
Hisatomi T, Le Formal F, Cornuz M, Brillet J, Tétreault N, Sivula K, Grätzel M. Energy Environ. Sci., 2011,4(7):2512. doi: 10.1039/c1ee01194d
[97]
Fu Z W, Jiang T F, Zhang L J, Liu B K, Wang D J, Wang L L, Xie T F. J. Mater. Chem. A, 2014,2(33):13705 doi: 10.1039/C4TA02527J
[98]
Yang X G, Liu R, Du C, Dai P C, Zheng Z, Wang D W. ACS Appl. Mater. Interfaces, 2014,6(15):12005. doi: 10.1021/am500948t

URL     pmid: 25069041
[99]
Tamirat A G, Rick J, Dubale A A, Su W N, Hwang B J. Nanoscale Horiz, 2016,1(4):243. doi: 10.1039/c5nh00098j

URL     pmid: 32260645
[100]
Wang S C, Chen P, Yun J H, Hu Y X, Wang L Z. Angew. Chem. Int. Ed., 2017,56(29):8500. doi: 10.1002/anie.201703491
[101]
Mao C Y, Zuo F, Hou Y, Bu X H, Feng P Y. Angew. Chem. Int. Ed., 2014,53(39):10485. doi: 10.1002/anie.201406017
[102]
Han J F, Zong X, Wang Z L, Li C. Phys. m. Chem. Phys., 2014,16(43):23544.
[103]
Zhong D K, Cornuz M, Sivula K, Grätzel M, Gamelin D R. Energy Environ. Sci., 2011,4(5):1759. doi: 10.1039/c1ee01034d
[104]
Zhong M, Hisatomi T, Kuang Y B, Zhao J, Liu M, Iwase A, Jia Q X, Nishiyama H, Minegishi T, Nakabayashi M, Shibata N, Niishiro R, Katayama C, Shibano H, Katayama M, Kudo A, Yamada T, Domen K. J. Am. Chem. Soc., 2015,137(15):5053. doi: 10.1021/jacs.5b00256

URL     pmid: 25802975
[105]
Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, Kubota J, Domen K. Thin Solid Films, 2011,519(7):2087. doi: 10.1016/j.tsf.2010.10.05520ff3ae0-5b70-46c6-a44a-4046f10e6967
[106]
McKone J R, Warren E L, Bierman M J, Boettcher S W, Brunschwig B S, Lewis N S, Gray H B. Energy Environ. Sci., 2011,4(9):3573. doi: 10.1039/c1ee01488a
[107]
Morales-Guio C G, Tilley S D, Vrubel H, Grätzel M, Hu X. Nat. Commun., 2014,5(1):1.
[108]
Tilley S D, Schreier M, Azevedo J, Stefik M, Grätzel M. Adv. Funct. Mater., 2014,24(3):303. doi: 10.1002/adfm.v24.3
[109]
Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Nat. Commun., 2013,4:1432. doi: 10.1038/ncomms2401

URL     pmid: 23385577
[110]
Liu L C, Ji Z Y, Zou W X, Gu X R, Deng Y, Gao F, Tang C J, Dong L. ACS Catal., 2013,3(9):2052. doi: 10.1021/cs4002755
[111]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009,8(1):76. doi: 10.1038/nmat2317

URL     pmid: 18997776
[112]
Fang Y X, Li X C, Wang X C. ACS Catal., 2018,8(9):8774. doi: 10.1021/acscatal.8b02549
[113]
Fang Y X, Xu Y T, Li X C, Ma Y W, Wang X C. Angew. Chem. Int. Ed., 2018,57(31):9749. doi: 10.1002/anie.v57.31
[114]
Fang Y X, Li X C, Wang X C. ChemSusChem, 2019,12(12):2605. doi: 10.1002/cssc.201900291

URL     pmid: 30773848
[115]
Sick T, Hufnagel A G, Kampmann J, Kondofersky I, Calik M, Rotter J M, Evans A, Döblinger M, Herbert S, Peters K, Böhm D, Knochel P, Medina D D, Fattakhova-Rohlfing D, Bein T. J. Am. Chem. Soc., 2018,140(6):2085. doi: 10.1021/jacs.7b06081

URL     pmid: 29249151
[116]
Jin E Q, Lan Z A, Jiang Q H, Geng K Y, Li G S, Wang X C, Jiang D L. Chem., 2019,5(6):1632. doi: 10.1016/j.chempr.2019.04.015
[117]
Ifraemov R, Shimoni R, He W H, Peng G M, Hod I. J. Mater. Chem. A, 2019,7(7):3046. doi: 10.1039/C8TA10483B
[118]
Wang S B, Wang X C. Small, 2015,11(26):3097. doi: 10.1002/smll.201500084

URL     pmid: 25917413
[119]
Rojas H C, Bellani S, Fumagalli F, Tullii G, Leonardi S, Mayer M T, Schreier M, Grätzel M, Lanzani G, Fonzo F D, Antognazza M A. Energy Environ. Sci., 2016,9(12):3710. doi: 10.1039/C6EE01655C
[120]
Bellani S, Rojas H C, Pan L F, Laitinen M, Sajavaara T, Fonzo F D, Grätzel M, Antognazza M S, Mayer M T. Sustainable Energy Fuels, 2017,1(9):1915. doi: 10.1039/C7SE00421D
[121]
Sun H J, Oner I H, Wang T, Zhang T, Selyshchev O, Neumann C, Fu Y B, Liao Z Q, Xu S Q, Hou Y, Turchanin A, Zahn D R T, Zschech E, Weidinger I M, Zhang J, Feng X L. Angew. Chem. Int. Ed., 2019,58(30):10368. doi: 10.1002/anie.v58.30
[122]
Zhang G G, Lan Z A, Wang X C. Angew. Chem. Int. Ed., 2016,55(51):15712. doi: 10.1002/anie.201607375
[123]
Xie J J, Shevlin S A, Ruan Q S, Moniz S J A, Liu Y R, Liu X, Li Y M, Lau C C, Guo Z X, Tang J W. Energy Environ. Sci., 2018,11(6):1617. doi: 10.1039/C7EE02981K
[124]
Luo J S, Steier L, Son M K, Schreier M, Mayer M T, Grätzel M. Nano Lett., 2016,16(3):1848. doi: 10.1021/acs.nanolett.5b04929

URL     pmid: 26866762
[125]
Wang F X, Septina W, Chemseddine A, Abdi F F, Friedrich D, Bogdanoff P, Krol R V D, Tilley S D, Berglund S P. J. Am. Chem. Soc., 2017,139(42):15094. doi: 10.1021/jacs.7b07847

URL     pmid: 28968492
[126]
Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T. J. Am. Chem. Soc., 2010,132(49):17343. doi: 10.1021/ja106930f

URL     pmid: 21090676
[127]
Zhao J, Minegishi T, Kaneko H, Ma G J, Zhong M, Nakabayashi M, Hisatomi T, Katayama M, Shibata N, Yamada T, Domen K. Chem. Commun., 2019,55(4):470. doi: 10.1039/C8CC08623K
[128]
Lee M H, Takei K, Zhang J J, Kapadia R, Zheng M, Chen Y Z, Nah J, Matthews T S, Chueh Y L, Ager J W, Javey A. Angew. Chem. Int. Ed., 2012,51(43):10760.
[129]
Wang Y J, Vanka S, Gim J, Wu Y P, Fan R L, Zhang Y Z, Shi J W, Shen M R, Hovden R, Mi Z T. Nano Energy, 2019,57:405.
[130]
Yang W, Ahn J, Oh Y, Tan J, Lee H, Park J, Kwon H C, Kim J, Jo W, Kim J, Moon J. Adv. Energy Mater., 2018,8(14):1702888.
[131]
Yu Y X, Pan L, Son M K, Mayer M T, Zhang W D, Hagfeldt A, Luo J S, Grätzel M. ACS Energy Lett., 2018,3(4):760.
[132]
Matsumoto Y. J. Solid State Chem., 1996,126(2):227.
[133]
Scanlon D O, Godinho K G, Morgan B J, Watson G W. J. Chem. Phys., 2010,132(2):024707. doi: 10.1063/1.3290815

URL     pmid: 20095694
[134]
Kang U, Choi S K, Ham D J, Ji S M, Choi W Y, Han D S, Abdel-Wahab A, Park H. Energy Environ. Sci., 2015,8(9):2638.
[135]
Read C G, Park Y, Choi K S. J. Phys. Chem. Lett., 2012,3(14):1872. doi: 10.1021/jz300709t

URL     pmid: 26292007
[136]
Prévot M S, Guijarro N, Sivula K. ChemSusChem, 2015,8(8):1359. doi: 10.1002/cssc.201403146

URL     pmid: 25572288
[137]
Jang Y J, Park Y B, Kim H E, Choi Y H, Choi S H, Lee J S. Chem. Mater., 2016,28(17):6054.
[138]
Prévot M S, Li Y, Guijarro N, Sivula K. J. Mater. Chem. A, 2016,4(8):3018.
[139]
Oh Y, Yang W, Kim J, Jeong S, Moon J. ACS Appl. Mater. Interfaces, 2017,9(16):14078. doi: 10.1021/acsami.7b01208

URL     pmid: 28388029
[140]
Oh Y, Yang W, Tan J, Lee H, Park J, Moon J. Nanoscale, 2018,10(8):3720. doi: 10.1039/c7nr07351h

URL     pmid: 29411823
[141]
Oh Y, Yang W, Tan J, Lee H, Park J, Moon J. Adv. Funct. Mater., 2019,29(17):1900194.
[142]
Prévot M S, Jeanbourquin X A, Bourée W S, Abdi F, Friedrich D, Krol R V D, Guijarro N, Formal F L, Sivula K. Chemistry of Materials, 2017,29(11):4952.
[143]
Jiang C M, Reyes-Lillo S E, Liang Y F, Liu Y S, Liu G J, Toma F M, Prendergast D, Sharp I D, Cooper J K. Chem. Mater., 2019,31(7):2524.
[144]
Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. Nature, 1997,389(6654):939.
[145]
Das R, Karna S, Lai Y C, Chou F C. Cryst. Growth Des, 2015,16(1):499.
[146]
Matsumoto Y, Sugiyama K, Sato E I. J. Solid State Chem., 1988,74(1):117.
[147]
Candeia R A, Bernardi M I B, Longo E, Santos I M G, Souza A G. Mater. Lett., 2004,58(5):569. doi: 10.1016/S0167-577X(03)00563-9
[148]
Matsumoto Y, Omae M, Sugiyama K, Sato E. J. Phys. Chem., 1987,91(3):577.
[149]
Ida S, Yamada K, Matsuka M, Hagiwara H, Ishihara T. Electrochim. Acta, 2012,82:397. doi: 10.1016/j.electacta.2012.03.174
[150]
Cao J Y, Kako T, Li P, Ouyang S, Ye J H. Electrochem. Commun, 2011,13(3):275. doi: 10.1016/j.elecom.2011.01.002
[151]
Ida S, Kearney K, Futagami T, Hagiwara H, Sakai T, Watanabe M, Rockett A, Ishihara T. Sustainable Energy Fuels, 2017,1(2):280. doi: 10.1039/C7SE00084G
[152]
Sekizawa K, Nonaka T, Arai T, Morikawa T. ACS Appl. Mater. Interfaces, 2014,6(14):10969. doi: 10.1021/am502500y

URL     pmid: 24983410
[153]
Wheeler G P, Choi K S. ACS Appl. Energy Mater., 2018,1(9):4917. doi: 10.1021/acsaem.8b00934
[154]
Díez-García M I, Gómez R. ACS Appl. Mater. Interfaces, 2016,8(33):21387. doi: 10.1021/acsami.6b07465

URL     pmid: 27466695
[155]
Kim E S, Kang H J, Magesh G, Kim J Y, Jang J W, Lee J S. ACS Appl. Mater. Interfaces, 2014,6(20):17762. doi: 10.1021/am504283t

URL     pmid: 25232699
[156]
Ahmed M G, Kandiel T A, Ahmed A Y, Kretschmer I, Rashwan F, Bahnemann D. J. Phys. Chem. C, 2015,119(11):5864. doi: 10.1021/jp512804p
[157]
Jones A, Islam M S. J. Phys. Chem. C, 2008,112(12):4455. doi: 10.1021/jp710463x
[158]
Zhu Y L, Zhou W, Yu J, Chen Y B, Liu M L, Shao Z P. Chem. Mater., 2016,28(6):1691. doi: 10.1021/acs.chemmater.5b04457
[159]
Tijare S N, Joshi M V, Padole P S, Mangrulkar P A, Rayalu S S, Labhsetwar N K. Int. J. Hydrogen Energy, 2012,37(13):10451. doi: 10.1016/j.ijhydene.2012.01.120
[160]
Yu Q, Meng X G, Wang T, Li P, Liu L Q, Chang K, Liu G G, Ye J H. Chem. Commun, 2015,51(17):3630. doi: 10.1039/C4CC09240F
[161]
Wheeler G P, Choi K S. ACS Energy Lett., 2017,2(10):2378. doi: 10.1021/acsenergylett.7b00642
[162]
Pawar G S, Tahir A A. Sci. Rep, 2018,8(1):3501. doi: 10.1038/s41598-018-21821-z

URL     pmid: 29472692
[163]
Diez-Garcia M I, Gomez R. ChemSusChem, 2017,10(11):2457. doi: 10.1002/cssc.201700166

URL     pmid: 28317341
[164]
Wheeler G P, Baltazar V U, Smart T J, Radmilovic A, Ping Y, Choi K S. Chem. Mater., 2019,31(15):5890. doi: 10.1021/acs.chemmater.9b02141
[165]
Pawar G S, Elikkottil A, Seetha S, Reddy K S, Pesala B, Tahir A A, Mallick T K. ACS Appl. Energy Mater., 2018,1(7):3449. doi: 10.1021/acsaem.8b00628
[166]
Pawar G S, Elikkottil A, Pesala B, Tahir A A, Mallick T K. Int. J. Hydrogen Energy, 2019,44(2):578. doi: 10.1016/j.ijhydene.2018.10.240
[167]
Li F S, Xu R, Nie C M, Wu X J, Zhang P L, Duan L L, Sun L C. Chem. Commun, 2019,55(86):12940. doi: 10.1039/C9CC06781G
[168]
Lumley M A, Radmilovic A, Jang Y J, Lindberg A E, Choi K S. J. Am. Chem. Soc., 2019,141(46):18358. doi: 10.1021/jacs.9b07976

URL     pmid: 31693356
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[11] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[12] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[13] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[14] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[15] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.