English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 1989-1998 DOI: 10.7536/PC130504 前一篇   后一篇

• 综述与评论 •

太阳能光解水的光阳极材料

周文理, 谢青季*, 廉世勋   

  1. 湖南师范大学化学化工学院 化学生物学及中药分析教育部重点实验室 长沙 410081
  • 收稿日期:2013-05-01 修回日期:2013-06-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 谢青季 E-mail:xieqj@hunnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21075036,21175042);湖南省高校科技创新团队支持计划和湖南省博士后科研资助专项计划(2013RS4025)资助

Photoelectrode Materials for Solar Water Splitting

Zhou Wenli, Xie Qingji*, Lian Shixun   

  1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
  • Received:2013-05-01 Revised:2013-06-01 Online:2013-12-15 Published:2013-09-17

光电化学(PEC)分解水制氢将太阳能转化成化学能,被认为有望替代化石能源而成为人类获取能源的最主要方式之一,受到人们的普遍关注。通过各种方法寻找和研究有应用潜力的半导体材料是该领域目前的重要研究方向。本文系统地评述了国内外最受关注的一些半导体材料在光电化学分解水制氢方面的研究进展,主要包括TiO2,α-Fe2O3,BiVO4,WO3和TaON;总结了改善光阳极半导体光电化学性能的策略,包括元素掺杂、形貌控制、表面修饰(包覆钝化层与担载共催化剂)和构建异质结。

Photoelectrochemical (PEC) water splitting converts solar energy into chemical energy which is stored in form of chemical bonds (H2 and O2) with the aid of an artificial photocatalyst. As one of the most fundamental ways to address the increasing global demand for energy, PEC solar energy conversion has been intensely investigated over the last four decades. Recently, many efforts have been made to find appropriate materials and improve the present promising conductors that can transform solar energy to produce chemical fuels. From the principle of PEC water splitting, this paper systematically reviews recent advances in some promising photoelectrode materials for PEC water splitting, including TiO2, α-Fe2O3, BiVO4, WO3 and TaON. Moreover, the recent progresses in improving PEC performance of the photoelectrode materials by some typical strategies are critically detailed and compared, including: (1) Element doping for enhancing visible light absorption in the wide bandgap semiconductor and increasing the donor density; (2) morphology control for increasing the specified surface area and shortening the average distance that photogenerated holes travel toward surface of photoelectrode; (3) surface treatments for passivating surface state by coating passivation overlayers and reducing the overpotential through loading cocatalysts; (4) heterojunction for enlarging light absorption and improving electron-hole separation. Finally, research trends in PEC cells for solar hydrogen production are discussed.

Contents
1 Introduction
2 Element doping
3 Morphology control
4 Surface treatments
4.1 Coating passivation layers
4.2 Loading cocatalysts
5 Heterojunction
6 Conclusions and outlook

中图分类号: 

()

[1] Sivula K, Le Formal F, Graetzel M. ChemSusChem, 2011, 4: 432—449
[2] Fujishima A, Honda K. Nature, 1972, 238: 37—38
[3] Xu M, Da P, Wu H, Zhao D, Zheng G. Nano Lett., 2012, 12: 1503—1508
[4] Liang S, He J, Sun Z, Liu Q, Jiang Y, Cheng H, He B, Xie Z, Wei S. J. Phys. Chem. C, 2012, 116: 9049—9053
[5] Townsend T K, Browning N D, Osterloh F E. ACS Nano, 2012, 6: 7420—7426
[6] Iwashina K, Kudo A. J. Am. Chem. Soc., 2011, 133: 13272—13275
[7] Shimizu K, Itoh S, Hatamachi T, Kodama T, Sato M, Toda K. Chem. Mater., 2005, 17: 5161—5166
[8] Yousefi M, Amiri M, Azimirad R, Moshfegh A Z. J. Electroanal. Chem., 2011, 661: 106—112
[9] Xu Z, Zheng Q, Su G. Phys. Rev. B, 2012, 85: art. no. 075402
[10] Li Z, Luo W, Zhang M, Feng J, Zou Z. Energy Environ. Sci., 2013, 6: 347—370
[11] Li J, Zhang J Z. Coord. Chem. Rev., 2009, 253: 3015—3041
[12] Park Y, McDonald K J, Choi K S. Chem. Soc. Rev., 2013, 42: 2321—2337
[13] Santra P K, Kamat P V. J. Am. Chem. Soc., 2012, 134: 2508—2511
[14] Swierk J R, Mallouk T E. Chem. Soc. Rev., 2013, 42: 2357—2387
[15] Liu Y, Li Y, Li W, Han S, Liu C. Appl. Surf. Sci., 2012, 258: 5038—5045
[16] Dong L, Zhang X, Dong X, Zhang X, Ma C, Ma H, Xue M, Shi F. J. Colloid Interface Sci., 2013, 393: 126—129
[17] Tran P D, Wong L H, Barber J, Loo J S C. Energy Environ. Sci., 2012, 5: 5902—5918
[18] Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O. J. Am. Chem. Soc., 2013, 135: 4596—4599
[19] 王光丽(Wang G L), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 中国科学(Scientia Sinica Chimica), 2009, 39: 1336—1347
[20] Buttry D A, Ward M D. Chem. Rev., 1992, 92: 1355—1379
[21] Janshoff A, Galla H J, Steinem C. Angew. Chem. Int. Ed., 2000, 39: 4004—4032
[22] Marx K A. Biomacromolecules, 2003, 4: 1099—1120
[23] Xie Q, Wang J, Zhou A, Zhang Y, Liu H, Xu Z, Yuan Y, Deng M, Yao S. Anal. Chem., 1999, 71: 4649—4656
[24] Wang T, Fu Y, Bu L, Qin C, Meng Y, Chen C, Ma M, Xie Q, Yao S. J. Phys. Chem. C, 2012, 116: 20908—20917
[25] Huang Z, Liu Y, Xie F, Fu Y, He Y, Ma M, Xie Q, Yao S. Chem. Commun., 2012, 48: 12106—12113
[26] Kuwabata S, Kishimoto A, Yoneyama H. J. Electroanal. Chem., 1994, 377: 261—268
[27] Si S, Huang K, Wang X, Huang M, Chen H. Thin Solid Films, 2002, 422: 205—210
[28] Schrebler R, Llewelyn C, Vera F, Cury P, Muñoz E, del Río R, Meier H G, Córdova R, Dalchiele E A. Electrochem. Solid-State Lett., 2007, 10: D95—D99
[29] 程萍(Cheng P), 顾明元(Gu M Y), 金燕苹(Jin Y P). 化学进展(Progress in Chemistry), 2005, 17: 8—14
[30] Roy P, Das C, Lee K, Hahn R, Ruff T, Moll M, Schmuki P. J. Am. Chem. Soc., 2011, 133: 5629—5631
[31] Das C, Roy P, Yang M, Jha H, Schmuki P. Nanoscale, 2011, 3: 3094—3096
[32] Dholam R, Patel N, Santini A, Miotello A. Int. J. Hydrogen Energy, 2010, 35: 9581—9590
[33] Pan H, Zhang Y W, Shenoy V B, Gao H. J. Phys. Chem. C, 2011, 115: 12224—12231
[34] Cao J, Zhang Y, Tong H, Li P, Kako T, Ye J. Chem. Commun., 2012, 48: 8649—8651
[35] Cheng C W, Sun Y. Appl. Surf. Sci., 2012, 263: 273—278
[36] Chen X, Burda C. J. Am. Chem. Soc., 2008, 130: 5018—5019
[37] Ma X, Wu Y, Lu Y, Xu J, Wang Y, Zhu Y. J. Phys. Chem. C, 2011, 115: 16963—16969
[38] Wheeler D A, Wang G, Ling Y, Li Y, Zhang J Z. Energy Environ. Sci., 2012, 5: 6682—6702
[39] Ling Y, Wang G, Wheeler D A, Zhang J Z, Li Y. Nano Lett., 2011, 11: 2119—2125
[40] Brillet J, Grätzel M, Sivula K. Nano Lett., 2010, 10: 4155—4160
[41] Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M. J. Am. Chem. Soc., 2010, 132: 7436—7444
[42] Kay A, Cesar I, Grätzel M. J. Am. Chem. Soc., 2006, 128: 15714—15721
[43] Tilley S D, Cornuz M, Sivula K, Graumltzel M. Angew. Chem. Int. Ed., 2010, 49: 6405—6412
[44] Wang G, Ling Y, Wheeler D A, George K E N, Horsley K, Heske C, Zhang J Z, Li Y. Nano Lett., 2011, 11: 3503—3509
[45] Cesar I, Sivula K, Kay A, Zboril R, Graetzel M. J. Phys. Chem. C, 2009, 113: 772—782
[46] Ye H, Lee J, Jang J S, Bard A J. J. Phys. Chem. C, 2010, 114: 13322—13328
[47] Zhong D K, Choi S, Gamelin D R. J. Am. Chem. Soc., 2011, 133: 18370—18377
[48] Luo W, Li Z, Yu T, Zou Z. J. Phys. Chem. C, 2012, 116: 5076—5081
[49] Park H S, Kweon K E, Ye H, Paek E, Hwang G S, Bard A J. J. Phys. Chem. C, 2011, 115: 17870—17879
[50] Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H, Parmar K P S, Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147—3151
[51] Li W, Li J, Wang X, Chen Q Y. Appl. Surf. Sci., 2012, 263: 157—162
[52] Sun Y P, Rajpura R, Raftery D. Proc. SPIE-Int. Soc. Opt. Eng., 2009, 7408: 74080—74087
[53] 杜俊平(Du J P), 李洁(Li J), 陈启元(Chen Q Y). 中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2007, 17: 1695—1700
[54] 赵娟(Zhao J), 刘士军(Liu S J), 李洁(Li J), 陈启元(Chen Q Y). 中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2008, 18: 330—335
[55] Zhang Z, Wang P. Energy Environ. Sci., 2012, 5: 6506—6512
[56] Butler M A. J. Appl. Phys., 1977, 48: 1914—1920
[57] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y. Nano Lett., 2011, 11: 3026—3033
[58] Hoang S, Guo S W, Hahn N T, Bard A J, Mullins C B. Nano Lett., 2012, 12: 26—32
[59] Jiang H, Meng X, Dai H, Deng J, Liu Y, Zhang L, Zhao Z, Zhang R. J. Hazard. Mater., 2012, 217: 92—99
[60] Chen L, Zhang Q, Huang R, Yin S F, Luo S L, Au C T. Dalton Trans., 2012, 41: 9513—9518
[61] Kim J K, Shin K, Cho S M, Lee T W, Park J H. Energy Environ. Sci., 2011, 4: 1465—1470
[62] Abe R, Higashi M, Domen K. J. Am. Chem. Soc., 2010, 132: 11828—11829
[63] Zhou W, Yang X, Huang L, Wang J, Tang J, Liang H. Chem. Eur. J., 2012, 18: 5367—5373
[64] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638—641
[65] Liu G, Yu J C, Lu G Q, Cheng H M. Chem. Commun., 2011, 47: 6763—6783
[66] Pan J, Liu G, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2011, 50: 2133—2139
[67] Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C. Nature commun., 2013, 4: art. no. 1432
[68] Zhang P, Kleiman-Shwarsctein A, Hu Y S, Lefton J, Sharma S, Forman A J, McFarland E. Energy Environ. Sci., 2011, 4: 1020—1028
[69] Zhu J, Yin Z, Yang D, Sun T, Yu H, Hoster H E, Hng H H, Zhang H, Yan Q. Energy Environ. Sci., 2013, 6: 987—993
[70] Arakawa H, Shiraishi C, Tatemoto M, Kishida H, Usui D, Suma A, Takamisawa A, Yamaguchi T. Proc. SPIE-Int. Soc. Opt. Eng., 2007, 6650: art. no. 665003
[71] Le Formal F, Sivula K, Grätzel M. J. Phys. Chem. C, 2012, 116: 26707—26720
[72] Barroso M, Mesa C A, Pendlebury S R, Cowan A J, Hisatomi T, Sivula K, Graetzel M, Klug D R, Durrant J R. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 15640—15645
[73] Le Formal F, Tetreault N, Cornuz M, Moehl T, Grätzel M, Smila K. Chem. Sci., 2011, 2: 737—743
[74] Hisatomi T, Le Formal F, Cornuz M, Brillet J, Tetreault N, Sivula K, Graetzel M. Energy Environ. Sci., 2011, 4: 2512—2515
[75] Chemelewski W D, Hahn N T, Mullins C B. J. Phys. Chem. C, 2012, 116: 5256—5262
[76] Franking R, Li L, Lukowski M A, Meng F, Tan Y, Hamers R J, Jin S. Energy Environ. Sci., 2013, 6: 500—512
[77] Kiwi J, Grätzel M. Angew. Chem. Int. Ed., 1978, 17: 860—861
[78] Nakagawa T, Beasley C A, Murray R W. J. Phys. Chem. C, 2009, 113: 12958—12961
[79] Nakagawa T, Bjorge N S, Murray R W. J. Am. Chem. Soc., 2009, 131: 15578—15579
[80] Kanan M W, Nocera D G. Science, 2008, 321: 1072—1076
[81] Bledowski M, Wang L, Ramakrishnan A, Beranek R. J. Mater. Res., 2013, 28: 411—417
[82] Zhong D K, Gamelin D R. J. Am. Chem. Soc., 2010, 132: 4202—4207
[83] McDonald K J, Choi K S. Chem. Mater., 2011, 23: 1686—1693
[84] Ye H, Park H S, Bard A J. J. Phys. Chem. C, 2011, 115: 12464—12470
[85] Pilli S K, Deutsch T G, Furtak T E, Turner J A, Brown L D, Herring A M. Phys. Chem. Chem. Phys., 2012, 14: 7032—7039
[86] Abdi F F, van de Krol R. J. Phys. Chem. C, 2012, 116: 9398—9404
[87] Abdi F F, Firet N, van de Krol R. ChemCatChem, 2013, 5: 490—496
[88] Wang Y B, Wang Y S, Jiang R R, Xu R. Ind. Eng. Chem. Res., 2012, 51: 9945—9951
[89] Seabold J A, Choi K S. Chem. Mater., 2011, 23: 1105—1112
[90] Zhong D K, Cornuz M, Sivula K, Graetzel M, Gamelin D R. Energy Environ. Sci., 2011, 4: 1759—1764
[91] Steinmiller E M P, Choi K S. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 20633—20636
[92] McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. J. Am. Chem. Soc., 2010, 132: 6882—6883
[93] Pendlebury S R, Barroso M, Cowan A J, Sivula K, Tang J, Graetzel M, Klug D, Durrant J R. Chem. Commun., 2011, 47: 716—718
[94] Cowan A J, Barnett C J, Pendlebury S R, Barroso M, Sivula K, Grätzel M, Durrant J R, Klug D R. J. Am. Chem. Soc., 2011, 133: 10134—10140
[95] Barroso M, Cowan A J, Pendlebury S R, Grätzel M, Klug D R, Durrant J R. J. Am. Chem. Soc., 2011, 133: 14868—14871
[96] Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann T W. J. Am. Chem. Soc., 2012, 134: 16693—16700
[97] Riha S C, Klahr B M, Tyo E C, Seifert S, Vajda S, Pellin M J, Hamann T W, Martinson A B F. ACS Nano, 2013, 7: 2396—2405
[98] Chen D, Zhang H, Liu Y, Li J. Energy Environ. Sci., 2013, 6: 1362—1387
[99] Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Chem. Mater., 2001, 13: 2765—2782
[100] Su J, Guo L, Bao N, Grimes C A. Nano Lett., 2011, 11: 1928—1933
[101] Kim E S, Nishimura N, Kim J Y, Jang J W, Jun H, Kubota J, Domen K, Lee J S. J. Am. Chem. Soc., 2013, 135: 5375—5383
[102] Kim H G, Borse P H, Jang J S, Jeong E D, Jung O S, Suh Y J, Lee J S. Chem. Commun., 2009, 5889—5891
[103] Kim H G, Borse P H, Choi W, Lee J S. Angew. Chem. Int. Ed., 2005, 44: 4585—4589
[104] Hong S J, Lee S, Jang J S, Lee J S. Energy Environ. Sci., 2011, 4: 1781—1787
[105] Sivula K, Formal F L, Graätzel M. Chem. Mater., 2009, 21: 2862—2867
[106] McDonald K J, Choi K S. Chem. Mater., 2011, 23: 4863—4869
[107] Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C. ACS Appl. Mater. Interfaces, 2012, 4: 4428—4433
[108] Liang Y, Tsubota T, Mooij L P A, van de Krol R. J. Phys. Chem. C, 2011, 115: 17594—17598
[109] Pilli S K, Deutsch T G, Furtak T E, Brown L D, Turner J A, Herring A M. Phys. Chem. Chem. Phys., 2013, 15: 3273—3278
[110] Ng J, Xu S, Zhang X, Yang H Y, Sun D D. Adv. Funct. Mater., 2010, 20: 4287—4294

[1] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[7] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[8] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[11] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[12] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[13] 张旭强, 吕功煊. 光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略[J]. 化学进展, 2020, 32(9): 1368-1375.
[14] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[15] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
阅读次数
全文


摘要

太阳能光解水的光阳极材料