English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 33-45 DOI: 10.7536/PC190606 前一篇   后一篇

所属专题: 电化学有机合成

• •

基于非贵金属催化剂常温常压电化学合成氨

郭芬岈1, 李宏伟1, 周孟哲2, 徐正其2, 郑岳青1, 黎挺挺1,**()   

  1. 1. 宁波大学化学合成与绿色应用研究所 材料科学与化学工程学院 宁波 315211
    2. 宁波大学医学院 宁波 315211
  • 收稿日期:2019-06-10 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 黎挺挺
  • 基金资助:
    国家自然科学基金项目资助(21603110)

Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions

Fenya Guo1, Hongwei Li1, Mengzhe Zhou2, Zhengqi Xu2, Yueqing Zheng1, Tingting Li1,**()   

  1. 1. Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
    2. Medical School, Ningbo University, Ningbo 315211, China
  • Received:2019-06-10 Online:2020-01-15 Published:2019-12-11
  • Contact: Tingting Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21603110)

氨是一种重要的化工原料和能量载体,“哈伯反应”是工业上合成氨最主要的方法,但是该方法存在着能耗高,大量排放温室气体CO2以及转化率低等问题。近年来,常温常压下基于多相催化剂的电化学还原N2反应(NRR)来制备氨因其原料(N2 + H2O)易得,不依赖传统化石能源以及条件温和等原因而表现出巨大的应用潜能,并受到了科学家的广泛关注。然而目前NRR仍存在着如催化剂以贵金属材料为主,催化效率低和催化机理未明确等问题亟待解决。本综述主要总结了电催化NRR的最新研究成果,首先介绍了电催化NRR热力学和催化机理,接着重点列举了基于非贵金属催化剂的研究进展,包括过渡金属氧化物、氮化物、硫化物、非金属催化剂及单原子催化剂等,然后讨论了几种NRR电催化剂的改性方法,以及常见的产物氨的定性定量方法,最后,就目前该研究方向中仍待解决的问题进行了总结,并对下一步的研究进行了展望。

Ammonia is an important chemical for producing fertilizer and also an important carbon-free energy carrier. Haber-Bosch process is the main method to synthesize ammonia. However, it suffers from some severe problems, such as the high energy consumption, the massive emission of greenhouse gas CO2 and the poor catalytic efficiency. Recently, ammonia synthesis based on electrocatalytic nitrogen reduction reaction (NRR) by using renewable energy under mild reaction conditions has attracted wide research attention. In addition, the raw materials (N2 + H2O) are earth abundant. Although great advances have been achieved in electrocatalytic NRR field, some challenges including the high-cost of noble metal based electrocatalysts, the low ammonia yield and unsatisfactory Faradaic efficiency, as well as the unexplored catalytic mechanism of NRR still exist. In this review, we summarize the recent advances in electrocatalytic NRR field based on heterogeneous catalysts. Firstly, we discuss the catalytic thermodynamics and reaction mechanisms towards NRR. Secondly, a range of recently reported non-noble metal included catalysts are surveyed, including transition metal oxides/nitrides/sulfides, metal-free materials and single-metal-atom catalysts. Then, some promising strategies to enhance the catalytic activity, selectivity and efficiency are proposed, and the main methods for the determination of ammonia are also mentioned. Finally, the challenges remaining to be solved are summarized, and future perspectives are also presented.

()
图1 基于多相催化剂NRR机理图[10]
Fig. 1 The mechanism of electrochemical N2 reduction reaction based on heterogeneous catalysts[10]
图2 (a) Cr2O3微米球高分辨透射电镜图;(b) 不同电压下Cr2O3微米球的i~t曲线; (c) 施加不同电压后电解液所对应的UV-Vis光谱图; (d) 稳定性循环实验[56]
Fig. 2 (a) The HR-TEM image of Cr2O3 microspheres; (b) The i~t plots obtained from different applied potentials; (c) The corresponding UV-Vis spectra obtained after long-term tests; (d) The durability test for Cr2O3 microspheres[56]
图3 (a) VN纳米颗粒的扫描电镜图;(b )电催化NRR性能;(c) 电催化机理及失活路径[63]
Fig. 3 (a) The SEM image of VN nanoparticles; (b) The electrocatalytic NRR performance; (c) The electrocatalytic mechanism and corresponding deactivation pathway[63]
图4 (a) 富缺陷MoS2纳米花的扫描电镜图;(b) 施加不同电压后电解液所对应的UV-Vis光谱图;(c) 不同电压电解实验所对应的合成氨速率;(d) 基于富缺陷MoS2纳米花电催化NRR的自由能变化图[67]
Fig. 4 (a) SEM image for defect-rich MoS2 nanoflower; (b) The corresponding UV-Vis spectra obtained after long-term tests; (c) The corresponding NH3 yields under different potentials; (d) Calculated free energy profile for NRR process on MoS2 basal plane[67]
图5 (a) 基于B掺杂石墨烯电催化NRR结构示意图;(b) 不同B掺杂量的石墨烯;(c) B掺杂量对于石墨烯电催化法拉第效率的影响[76]
Fig. 5 (a) Schematic illustration of NRR over B-doped graphene; (b) Percentages of different B doping configurations in three B-doped graphene samples; (c) The Faradaic efficiency values of BG-1, BOG, BG-2 and G at different applied potentials[76]
图6 (a) Ru/N-C的制备方法;(b~e) Ru/N-C与Ru纳米颗粒的电催化NRR性能比较[84]
Fig. 6 (a) Scheme of the synthetic procedure for Ru/N-C; (b~e) Comparison of electrocatalytic NRR performance for Ru/N-C and Ru nanoparticles[84]
图7 (a) 二十四面体Au纳米棒的原子层表面结构;(b) Au纳米棒几何模型及暴露的{730}面;(c) 电化学反应池构成;(d) Au纳米棒不同电压下的电催化NRR表现[91]
Fig. 7 (a) Atomic level surface structures of Au THH NR; (b) Geometric models of an Au THH NR and exposed {730} facet; (c) Schematic for electrocatalytic NRR; (d) Yield rate of ammonia, hydrazine hydrate formation, and Faradic efficiency at each given potential[91]
图8 (a) 基于MoN纳米片阵列电化学反应池示意图;(b) MoN纳米片阵列扫描电镜图;(c,d) 不同电压下电催化NRR性能[92]
Fig. 8 (a) Schematic for electrocatalytic NRR based on MoN nanosheet array; (b) The corresponding SEM image; (c,d) The electrocatalytic performance under various applied potential[92]
图9 (a) 碳缺陷的碳纳米片(BCN)的扫描电镜图;(b) 基于理论模拟的BCN表面结构(灰(黑)、粉、红、黄和绿球分别代表C、B、O、N和H);(c) 不同催化剂对应的电催化NRR性能[97]
Fig. 9 (a) The SEM image for BCN materials; (b) Schematic of the computational models. Gray (black), pink, red, blue, and green balls represent C, B, O, N, and H atoms, respectively; (c) The corresponding electrocatalytic NRR performance based on different catalysts[97]
表1 电催化剂性能对比
Table 1 Summary of recently reported NRR electrocatalysts
Catalyst Electrolyte NH3 yield rate Faraday efficiency(%) Ref
Noble metalcatalyst Au nanocage 0.5 M LiClO4 3.9 μg·h-1·cm-2 (-0.5 V vs. RHE) 30.2 25
Au nanorod 0.1 M KOH 1.648 μg·h-1·cm-2 (-0.2 V vs. RHE) 4 91
Ru/C 2 M KOH 0.21 μg·h-1·cm-2 (-1.1 V vs. Ag/AgCl) 0.28 27
RuPt/C 18.36 μg·h-1·cm-2 (0.123 V vs. RHE) 13.2 28
Rh ultrathin nanosheet 0.1 M KOH 23.88 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 0.217 31
Pt/C H+/Li+/N H 4 + 47.2 μg·h-1·cm-2 (1.2 V) 0.83 32
Non-noble metal catalyst Fe2O3/CNT dilute KHCO3 solution 0.22 μg·h-1·cm-2 (-0.2 V vs. Ag/AgCl) 0.15 49
Fe2O3-rGO 0.5 M LiClO4 22.13 μg·h-1·m g cat - 1 (-0.50 V vs. RHE) 5.89 51
Fe2O3- x /CNT 0.1 M KOH 0.46 μg·h-1·cm-2 (-0.9 V vs. Ag/AgCl) 6.0 52
Fe3O4/Ti 0.1 M Na2SO4 5.6×10-11 mol·s-1·cm-2 (-0.4 V vs. RHE) 2.6 53
Hollow Cr2O3 mircometer
ball
0.1 M Na2SO4 25.3 μg·h-1·m g cat - 1 (-0.9 V vs. RHE) 6.78 56
Mo2N 0.1 M HCl 78.4 μg·h-1·m g cat - 1 (-0.3 V vs. RHE) 4.5 62
VN 0.05 M H2SO4 20.2 μg·h-1·cm-2 (-0.1 V vs. RHE) 6 63
MoS2 0.1 M Na2SO4 8.08×10-11 mol·s-1·cm-2 (-0.5 V vs. RHE) 1.17 66
Defect-rich MoS2 nanoflower 0.1 M Na2SO4 29.28 μg·h-1·m g cat - 1 (-0.4 V vs. RHE) 8.34 67
MoS2/graphene 0.1 M LiClO4 24.82 μg·h-1·m g cat - 1 (-0.45 V vs. RHE) 4.58 68
CoS x /NS-G 0.05 M H2SO4 25.0 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 25.9
(-0.05 V vs.RHE)
69
MoN nanosheet array 0.1 M HCl 3.01×10-10 mol·s-1·cm-2 (-0.3 V vs. RHE) 1.15 92
Bi nanosheet array 0.1 M HCl 6.89 × 10-11 mol·s-1·cm-2 (-0.5 V vs. RHE) 10.26 93
Bi4V2O11/CeO2 0.1 M HCl 23.21 μg·h-1·mg-1 (-0.2 V vs. RHE) 10.16 96
Metal-free catalyst Oxidized carbonnanotube 0.1 M LiClO4 32.33 μg·h-1·m g cat - 1 (-0.4 V vs. RHE) 12.50 73
N-doped Carbon 0.1 M KOH 3.4×10-6 mol·h-1·cm-2(-0.4 V vs. RHE) 10.2 75
B-doped graphene 0.05 M H2SO4 9.8 μg·h-1·cm-2 (-0.5 V vs. RHE) 10.8 76
N, P-codoped porous carbon 0.1 M HCl 0.97 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 4.2 77
BCN 0.1 M HCl 7.75 μg·h-1·mgcat.-1 (-0.2 V vs. RHE) 13.79 97
nitrogen-decifient polymeric carbon nitride 0.1 M HCl 8.09 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 11.59 98
S-CNS 0.1 M Na2SO4 19.07 μg·h-1·m g cat - 1 (-0.7 V vs. RHE) 7.47 99
single metal atom catalyst Au/C3N4 0.05 M H2SO4 1.3 mg·h-1·m g Au - 1 (-0.1 V vs. RHE) 11.1 83
Ru/N-C 0.05 M H2SO4 120.9 μg·h-1·mg-1 (-0.2 V vs. RHE) 29.6 84
Ru/N-C 0.1 M HCl 3.665 m g N H 3 ·h-1·m g Ru - 1 (-0.21 V) 21 (-0.11 V) 85
[1]
蒋德军 (Jiang D J). . 现代化工(Modern Chemical Industry), 2005,8:9.
[2]
刘华中 (Liu H Z) . 化工进展(Chemical Industry and Engineering Progress), 2017,32:1995.
[3]
Horrocks S M . Technol. Cult., 2002,43:622.
[4]
Erisman J W , Sutton M A , Galloway J , Klimont Z , Winiwarter W . Nat. Geosci., 2008,1:636.
[5]
Deng J , Iniguez J A , Liu C . Joule, 2018,2:846.
[6]
Foster S L , Perez Bakovic S I , Duda R D , Maheshwari S , Milton R D , Minteer S D , Janik M J , Renner J N , Greenlee L F . Nat. Catal., 2018,1:490. https://doi.org/10.1038/s41929-018-0092-7

doi: 10.1038/s41929-018-0092-7     URL    
[7]
Li X B , Tung C H , Wu L Z ,. Angew. Chem. Int. Ed., 2019,58:10804. https://www.ncbi.nlm.nih.gov/pubmed/30821022

doi: 10.1002/anie.201901267     URL     pmid: 30821022
[8]
Appl M . Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley VCH, 2006.
[9]
Liu H . Chin. J. Catal. 2014,35:1619.
[10]
van der Ham C J M , Koper M T M , Hetterscheid D G H . Chem. Soc. Rev., 2014,43:5183. https://www.ncbi.nlm.nih.gov/pubmed/24802308

doi: 10.1039/c4cs00085d     URL     pmid: 24802308
[11]
Eady R R . Chem. Rev., 1996,96:3013. https://www.ncbi.nlm.nih.gov/pubmed/11848850

doi: 10.1021/cr950057h     URL     pmid: 11848850
[12]
Burgess B K , Lowe D J . Chem. Rev., 1996,96:2983. https://www.ncbi.nlm.nih.gov/pubmed/11848849

doi: 10.1021/cr950055x     URL     pmid: 11848849
[13]
Macleod K C , Holland P L . Nat. Chem., 2013,5:559. https://www.ncbi.nlm.nih.gov/pubmed/23787744

doi: 10.1038/nchem.1620     URL     pmid: 23787744
[14]
Jia H P , Quadrelli E A . Chem. Soc. Rev., 2014,43:547. https://www.ncbi.nlm.nih.gov/pubmed/24108246

doi: 10.1039/c3cs60206k     URL     pmid: 24108246
[15]
Rittle J , Peters J C . J. Am. Chem. Soc., 2016,138:4243. https://www.ncbi.nlm.nih.gov/pubmed/26937584

doi: 10.1021/jacs.6b01230     URL     pmid: 26937584
[16]
Cui X Y , Tang C , Zhang Q . Adv. Energy Mater., 2018,8:1800369. http://doi.wiley.com/10.1002/aenm.v8.22

doi: 10.1002/aenm.v8.22     URL    
[17]
Wan Y , Xu J , Lv R . Materials Today, 2019,27:69.
[18]
Chen G F , Ren S , Zhang L , Cheng H , Luo Y , Zhu K , Ding L X , Wang X . Small Methods, 2018,26:1800337.
[19]
Guo X , Du H , Qu F , Li J . J. Mater. Chem. A, 2019,7:3531.
[20]
Shilov A E . Russ. Chem. Bull., 2003,52:2555.
[21]
Montoya J H , Tsai C , Vojvodic A , Norskov J K . ChemSusChem, 2015,8:2180. https://www.ncbi.nlm.nih.gov/pubmed/26097211

doi: 10.1002/cssc.201500322     URL     pmid: 26097211
[22]
Shi M M , Bao D , Wulan B R , Li Y H , Zhang Y F , Yan J M , Jiang Q . Adv. Mater., 2017,29:1606550.
[23]
Li S J , Bao D , Shi M M , Wulan B R , Yan J M , Jiang Q . Adv. Mater., 2017,29:1700001.
[24]
Jiang Y , Su J , Yang Y , Jia Y , Chen Q , Xie Z , Zheng L . Nano Res., 2016,9:849.
[25]
Nazemi M , Panikkanvalappil S R , El-Sayed M A . Nano Energy, 2018,49:316.
[26]
Wang Z , Li Y , Yu H , Xu Y , Xue H , Li X , Wang H , Wang L . ChemSusChem, 2018,11:3480. https://www.ncbi.nlm.nih.gov/pubmed/30109915

doi: 10.1002/cssc.201801444     URL     pmid: 30109915
[27]
Kordali V , Kyriacou G , Lambrou C . Chem. Commun., 2000,17:1673.
[28]
Manjunatha R , Schechter A . Electrochem. Commun., 2018,90:96.
[29]
Sheets B L , Botte G G . Chem. Commun., 2018,54:4250. https://www.ncbi.nlm.nih.gov/pubmed/29521392

doi: 10.1039/c8cc00657a     URL     pmid: 29521392
[30]
Lan R , Tao S . RSC Adv., 2013,3:18016.
[31]
Liu H , Han S , Zhao Y , Zhu Y , Tian X , Zeng J , Jiang J , Xia B Y , Chen Y . J. Mater. Chem. A, 2018,6:3211.
[32]
Lan R , Irvine J T S , Tao S . Sci. Rep., 2013,3:1145. https://www.ncbi.nlm.nih.gov/pubmed/23362454

doi: 10.1038/srep01145     URL     pmid: 23362454
[33]
Zhan C G , Nichols J A , Dixon D A . J. Phys. Chem. A, 2003,107:4184.
[34]
Bazhenova T A , Shilov A E . Coord. Chem. Rev., 1995,144:69.
[35]
Bratsch S G . J. Phys. Chem. Ref. Data., 1989,18:1. http://aip.scitation.org/doi/10.1063/1.555839

doi: 10.1063/1.555839     URL    
[36]
Jones G , Bligaard T , Abild-Pedersen, Nørskov J K . J. Phys.: Condens. Matter., 2008,20:064239. https://www.ncbi.nlm.nih.gov/pubmed/21693900

doi: 10.1088/0953-8984/20/6/064239     URL     pmid: 21693900
[37]
Gottle A J , Koper M T M , . Chem. Sci., 2017,8:458. https://www.ncbi.nlm.nih.gov/pubmed/28451193

doi: 10.1039/c6sc02984a     URL     pmid: 28451193
[38]
Kumar C V S , Subramanian V . Phys. Chem. Chem. Phys., 2017,19:15377. https://www.ncbi.nlm.nih.gov/pubmed/28574553

doi: 10.1039/c7cp02220d     URL     pmid: 28574553
[39]
Skúlason E , Bligaard T , Gudmundsdottir S , Studt F , Rossmeisl J , Abild-Pedersen F , Vegge T , Jonsson H , Norskov J K . Phys. Chem. Chem. Phys., 2012,14:1235. https://www.ncbi.nlm.nih.gov/pubmed/22146855

doi: 10.1039/c1cp22271f     URL     pmid: 22146855
[40]
Zhou Q Q , Li T T , Wang J Y , Guo F Y , Zheng Y Q . Electrochim. Acta, 2019,296:1035. https://linkinghub.elsevier.com/retrieve/pii/S0013468618326677

doi: 10.1016/j.electacta.2018.11.183     URL    
[41]
Zhou Q Q , Li T T , Qian J J , Hu Y , Guo F Y , Zheng Y Q . J. Mater. Chem. A, 2018,6:14431. http://xlink.rsc.org/?DOI=C8TA03120G

doi: 10.1039/C8TA03120G     URL    
[42]
Zhou Q Q , Li T T , Guo F Y , Zheng Y Q . ACS Sustain. Chem. Eng., 2018,6:11303. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b00802

doi: 10.1021/acssuschemeng.8b00802     URL    
[43]
Zhou Q Q , Li T T , Qian J J , Xu W , Hu Y , Zheng Y Q . ACS Appl. Energy Mater., 2018,1:1364. https://pubs.acs.org/doi/10.1021/acsaem.8b00076

doi: 10.1021/acsaem.8b00076     URL    
[44]
Li T T , Zhou Q Q , Qian J J , Hu Y , Zheng Y Q . Electrochim. Acta, 2019,307:92. https://linkinghub.elsevier.com/retrieve/pii/S0013468619306140

doi: 10.1016/j.electacta.2019.03.183     URL    
[45]
Li T T , Qian J J , Zhou Q Q , Lin J L , Zheng Y Q . Dalton Trans., 2017,46:13020. https://www.ncbi.nlm.nih.gov/pubmed/28936507

doi: 10.1039/c7dt03033a     URL     pmid: 28936507
[46]
Li T T , Zheng Y Q . Dalton Trans., 2016,45:12685. https://www.ncbi.nlm.nih.gov/pubmed/27445118

doi: 10.1039/c6dt01891b     URL     pmid: 27445118
[47]
Nguyen M T , Seriani N , Gebauer R . Phys. Chem. Chem. Phys., 2015,17:14317. https://www.ncbi.nlm.nih.gov/pubmed/25482262

doi: 10.1039/c4cp04308a     URL     pmid: 25482262
[48]
Licht S , Cui B , Wang B , Li F F , Lau J , Liu S . Science, 2014,345:637. https://www.ncbi.nlm.nih.gov/pubmed/25104378

doi: 10.1126/science.1254234     URL     pmid: 25104378
[49]
Chen S , Perathoner S , Ampelli C , Mebrahtu C , Su D , Centi G . Angew. Chem. Int. Ed., 2017,56:2699. https://www.ncbi.nlm.nih.gov/pubmed/28128489

doi: 10.1002/anie.201609533     URL     pmid: 28128489
[50]
Chen S M , Perathoner S , Ampelli C , Mebrahtu C , Su D S , Centi G . ACS Sustain. Chem. Eng., 2017,5:7393. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01742

doi: 10.1021/acssuschemeng.7b01742     URL    
[51]
Li J , Zhu X , Wang T , Luo Y , Sun X . Inorg. Chem. Front., 2019, DOI: 10.1039/C9QI00968J.
[52]
Hu L , Khaniya A , Wang J , Chen G , Kaden W E , Feng X . ACS Catal., 2018,8:9312. https://pubs.acs.org/doi/10.1021/acscatal.8b02585

doi: 10.1021/acscatal.8b02585     URL    
[53]
Liu Q , Zhang X , . Nanoscale, 2018,10:14386. https://www.ncbi.nlm.nih.gov/pubmed/30027985

doi: 10.1039/c8nr04524k     URL     pmid: 30027985
[54]
Han J , Liu Z , Ma Y , Cui G , Xie F , Wang F , Wu Y , Gao S , Xu Y , Sun X . Nano Energy, 2018,52:264. https://linkinghub.elsevier.com/retrieve/pii/S2211285518305330

doi: 10.1016/j.nanoen.2018.07.045     URL    
[55]
Han J , Ji X , Ren X , Cui G , Li L , Xie F , Wang H , Li B , Sun X . J. Mater. Chem. A, 2018,6:12974. http://xlink.rsc.org/?DOI=C8TA03974G

doi: 10.1039/C8TA03974G     URL    
[56]
Zhang Y , Qiu W , Ma Y , Luo Y , Tian Z , Cui G , Xie F , Chen L , Li T , Sun X . ACS Catal., 2018,8:8540.
[57]
Abghoui Y , Garden A L , Hlynsson V F , Bjorgvinsdottir S , Olafsdottir H , Skúlason E . Phys. Chem. Chem. Phys., 2015,17:4909. https://www.ncbi.nlm.nih.gov/pubmed/25446373

doi: 10.1039/c4cp04838e     URL     pmid: 25446373
[58]
Abghoui Y , Skúlasson E . Procedia Computer Sci., 2015,51:1897.
[59]
Abghoui Y , Garden A L , Howalt J G , Vegge T , Skúlason E . ACS Catal., 2016,6:635.
[60]
Abghoui Y , Skúlason E . Catal. Today, 2017,286:78.
[61]
Abghoui Y , Skúlason E . J. Phys. Chem. C, 2017,121:6141.
[62]
Ren X , Cui G , Chen L , Xie F , Wei Q , Tian Z , Sun X . Chem. Commun., 2018,54:8474. https://www.ncbi.nlm.nih.gov/pubmed/30003198

doi: 10.1039/c8cc03627f     URL     pmid: 30003198
[63]
Yang X , Nash J , Anibal J , Dunwell M , Kattel S , Stavitski E , Attenkofer K , Chen G J , Yan Y S , Xu B . J. Am. Chem. Soc., 2018,140:13387. https://www.ncbi.nlm.nih.gov/pubmed/30244579

doi: 10.1021/jacs.8b08379     URL     pmid: 30244579
[64]
Du H L , Gengenbach T R , Hodgetts R MacFarlane D R , Simonov A N . ACS Sustainable Chem. Eng., 2019,7:6839.
[65]
Hu B , Hu M , Seefeldt L C , Liu T L . ACS Energy Lett., 2019,4:1053
[66]
Zhang L , Ji X , Ren X , Ma Y , Shi X , Tian Z , Asiri A M , Chen L , Tang B , Sun X . Adv. Mater., 2018,30:1800191.
[67]
Li X , Li T , Ma Y , Wei Q , Qiu W , Guo H , Shi X , Zhang P , Asiri A M , Chen L , Tang B , Sun X . Adv. Energy Mater., 2018,8:1801357.
[68]
Li X , Ren X , Liu X , Zhao J , Sun X , Zhang Y , Kuang X , Yan T , Wei Q , Wu D . J. Mater. Chem. A, 2019,7:2524.
[69]
Chen P , Zhang N , Wang S , Zhou T , Tong Y , Ao C , Yan W , Zhang L , Chu W , Wu C , Xie Y . PNAS, 2019,116:6635. https://www.ncbi.nlm.nih.gov/pubmed/30872473

doi: 10.1073/pnas.1817881116     URL     pmid: 30872473
[70]
LégaréM, Bélanger-Chabot G , Dewhurst R D , Welz E , Krummenacher I , Engels B , Braunschweig H . Science, 2018,359:896. https://www.ncbi.nlm.nih.gov/pubmed/29472479

doi: 10.1126/science.aaq1684     URL     pmid: 29472479
[71]
Zhou F , Azofra L M , Ali M , Kar M , Simonov A N , McDonnell-Worth C , Sun C , Zhang X, D , MacFarlane R . Energy Environ. Sci., 2017,10:2516.
[72]
Liu Y , Su Y , Quan X , Fan X , Chen S , Yu H , Zhao H , Zhang Y , Zhao J . ACS Catal., 2018,8:1186.
[73]
Zhao J , Wang B , Zhou Q , Wang H , Li X , Chen H , Wei Q , Wu D , Luo Y , You J , Gong F F , Sun X . Chem. Commun., 2019,55:4997. https://www.ncbi.nlm.nih.gov/pubmed/30968881

doi: 10.1039/c9cc00726a     URL     pmid: 30968881
[74]
Wang Q , Lei Y , Wang D , Li Y . Energy Environ. Sci., 2019,12:1730.
[75]
Mukherjee S , Cullen D A , Karakalos S , Liu K X , Zhang H , Zhao S , Xu H , More K L , Wang G F , Wu G . Nano Energy, 2018,48:217.
[76]
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Joule, 2018,2:1610.
[77]
Song P , Wang H , Kang L , Ran B , Song H , Wang R . Chem. Commun., 2019,55:687. https://www.ncbi.nlm.nih.gov/pubmed/30565601

doi: 10.1039/c8cc09256g     URL     pmid: 30565601
[78]
Liang S , Hao C , Shi Y . ChemCatChem, 2015,7:2559.
[79]
Zhu C , Fu S , Shi Q , Du D , Lin Y . Angew. Chem. Int. Ed., 2017,56:13944. https://www.ncbi.nlm.nih.gov/pubmed/28544221

doi: 10.1002/anie.201703864     URL     pmid: 28544221
[80]
Ling C , Bai X , Ouyang Y , Du A , Wang J . J. Phys. Chem. C, 2018,122:16842.
[81]
Choi C , Back B , Kim N Y , Lim J , Kim Y H , Jung Y . ACS Catal., 2018,8:7517.
[82]
Zhao J , Chen Z . J. Am. Chem. Soc., 2017,139:12480. https://www.ncbi.nlm.nih.gov/pubmed/28800702

doi: 10.1021/jacs.7b05213     URL     pmid: 28800702
[83]
Wang X , Wang W , Qiao M , Wu G , Chen W , Yuan T , Xu Q , Chen M , Zhang Y , Wang X , Wang J , Ge J , Hong X , Li Y , Wu Y , Li Y . Sci. Bull., 2018,63:1246.
[84]
Geng Z , Liu Y , Kong X , Li P , Li K , Liu Z , Du J , Shu M , Si R , Zeng J . Adv. Mater., 2018,30:1803498.
[85]
Tao H , Choi C , Ding L X , Jiang Z , Han Z , Jia M , Fan Q , Gao Y , Wang H , Robertson A W , Hong S , Jung Y , Liu S , Sun Z . Chem, 2019,5:204.
[86]
Durand W J , Peterson A A , Studt F , Abild-pedersen F , Nørskov J K . Surf. Sci., 2011,605:1354.
[87]
Roberts F S , Kuhl K P , Nilsson A . Angew. Chem. Int. Ed., 2015,54:5179. https://www.ncbi.nlm.nih.gov/pubmed/25728325

doi: 10.1002/anie.201412214     URL     pmid: 25728325
[88]
Wang Z L , Li C , Yamauchi Y . Nano. Today, 2016,11:373. https://linkinghub.elsevier.com/retrieve/pii/S1748013216300548

doi: 10.1016/j.nantod.2016.05.007     URL    
[89]
Luo W , Nie X , Janik M J , Asthagiri A . ACS Catal., 2015,6:219.
[90]
Yang D , Chen T , Wang Z J . J. Mater. Chem. A, 2017,5:18967.
[91]
Bao D , Zhang Q , Meng F , Zhong H , Shi M , Zhang Y , Yan J , Jiang Q , Zhang X . Adv. Mater., 2017,29:1604799.
[92]
Zhang L , Ji X , Ren X , Luo Y , Shi X , Asiri A M , Zheng B , Sun X . ACS Sustainable Chem. Eng., 2018,6:9550.
[93]
Zhang R , Ji L , Kong W , Wang H , Zhao R , Chen H , Li T , Li B , Luo Y , Sun X . Chem. Commun., 2019,55:5263. https://www.ncbi.nlm.nih.gov/pubmed/30993285

doi: 10.1039/c9cc01703h     URL     pmid: 30993285
[94]
Guo C , Ran J , Vasileff A , Qiao S Z . Energy Environ. Sci., 2018,11:45.
[95]
Cheng M , Xiao C , Xie Y . J. Mater. Chem. A, 2019,7:19616.
[96]
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . Angew. Chem. Int. Ed., 2018,130:6181.
[97]
Chen C , Yan D , Wang Y , Zhou Y , Zhou Y , Li Y , Wang S . Small, 2019,15:1805029.
[98]
Lv C , Qian Y , Yan C , Ding Y , Liu Y , Chen G , Yu G . Angew. Chem. Int. Ed., 2018,57:10246.
[99]
Xia L , Wu X , Wang Y , Niu Z , Liu Q , Li T , Shi X , Asiri A M , Sun X . Small Methods, 2018,1800251.
[100]
Zhang S , Zhao Y , Shi R Waterhouse G I N , Zhang T . EnergyChem, 2019,1:100013.
[101]
Schrauzer G N , Guth T D . J. Am. Chem. Soc. 1977,99:7189.
[102]
Navio J A , Macias M , Gonzalezcatalan M , Justo A J . Mater. Sci., 1992,27:3036.
[103]
Hirakawa H , Hashimoto M , Shiraishi Y , Hirai T . J. Am. Chem. Soc., 2017,139:10929. https://www.ncbi.nlm.nih.gov/pubmed/28712297

doi: 10.1021/jacs.7b06634     URL     pmid: 28712297
[104]
Lashgari M , Zeinalkhani P . Appl. Catal. A: Gen., 2017,529:91.
[105]
Endoh E , Leland J K , Bard A J . J. Phys. Chem., 1986,90:6223.
[106]
Janet C M , Navaladian S , Viswanathan B , Varadarajan T K , Viswanath R P . J. Phys. Chem. C, 2010,114:2622.
[107]
Zhao W , Xi H , Zhang M , Li Y , Chen J , Zhang J , Zhu X . Chem. Commun., 2015,51:4785. https://www.ncbi.nlm.nih.gov/pubmed/25704549

doi: 10.1039/c5cc00589b     URL     pmid: 25704549
[108]
Miyama H , Fujii N , Nagae Y . Chem. Phys. Lett., 1980,74:523.
[109]
Li H , Shang J , Ai Z , Zhang L . J. Am. Chem. Soc., 2015,137:6393. https://www.ncbi.nlm.nih.gov/pubmed/25874655

doi: 10.1021/jacs.5b03105     URL     pmid: 25874655
[110]
Zhu D , Zhang L , Ruther R E , Hamers R J . Nat. Mater., 2013,12:836. https://www.ncbi.nlm.nih.gov/pubmed/23812128

doi: 10.1038/nmat3696     URL     pmid: 23812128
[111]
Thomas D H , Rey M , Jackson P E . J. Chromatogr A, 2002,956:181. https://www.ncbi.nlm.nih.gov/pubmed/12108649

doi: 10.1016/s0021-9673(02)00141-3     URL     pmid: 12108649
[112]
Michalski R ,. Crit. Rev. Anal. Chem., 2009,39:230.
[113]
Fourmond V , Léger C . Angew. Chem. Int. Ed., 2017,56:4388. https://www.ncbi.nlm.nih.gov/pubmed/28300341

doi: 10.1002/anie.201701179     URL     pmid: 28300341
[114]
Amornthammarong N , Zhang J Z . Anal. Chem., 2008,80:1019. https://www.ncbi.nlm.nih.gov/pubmed/18217726

doi: 10.1021/ac701942f     URL     pmid: 18217726
[115]
Zhou L , Boyd C E . Aquaculture, 2016,450:187.
[116]
Ivanc ic I , Degobbis D . Water Res., 1984,18:1143. https://linkinghub.elsevier.com/retrieve/pii/0043135484902306

doi: 10.1016/0043-1354(84)90230-6     URL    
[117]
Bruzzoniti M C , De Carlo R M , Fungi M . J. Sep. Sci., 2008,31:3182. https://www.ncbi.nlm.nih.gov/pubmed/18780379

doi: 10.1002/jssc.200800319     URL     pmid: 18780379
[118]
LeDuy A , Samson R . Biotechnol. Lett., 1982,4:303.
[119]
Amornthammarong N , Zhang J Z , Ortner P B . Anal. Methods, 2011,3:1501.
[120]
Zhu Y , Yuan D , Lin H , Zhou T . Anal. Lett., 2016,49:665.
[121]
Zhu Y , Yuan D , Huang Y , Ma J , Feng S . Anal. Chim. Acta., 2013,794:47. https://www.ncbi.nlm.nih.gov/pubmed/23972974

doi: 10.1016/j.aca.2013.08.009     URL     pmid: 23972974
[1] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[2] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[3] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[4] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[5] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[6] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[7] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[8] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[9] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[10] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[11] 解英娟, 吴志娇, 张晓, 马佩军, 朴玲钰. 混晶TiO2光催化剂的制备及机理研究[J]. 化学进展, 2014, 26(07): 1120-1131.
[12] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[13] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.
[14] 张君涛,张国利,冯霄. 乙烯齐聚制α-烯烃镍系催化剂[J]. 化学进展, 2008, 20(0708): 1032-1036.
[15] 杨缜. 有机介质中酶催化的基本原理[J]. 化学进展, 2005, 17(05): 924-930.