English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 10-20 DOI: 10.7536/PC181203 前一篇   后一篇

• 综述 •

动态配位空间的构筑与调控

李娜1,3, 常泽1,3, 陈强1,3, 尹佳成1,3, 卜显和1,2,3,**()   

  1. 1. 南开大学材料科学与工程学院国家新材料研究院 金属与分子基材料化学天津市重点实验室 天津 300350
    2. 南开大学化学学院 元素有机化学国家重点实验室 天津 300071
    3. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2018-12-05 修回日期:2018-12-25 出版日期:2019-01-04 发布日期:2019-01-04
  • 通讯作者: 卜显和
  • 基金资助:
    国家自然科学基金项目(21421001); 国家自然科学基金项目(21531005); 高等学校学科创新引智计划资助(B18030)

Construction and Modulation of Dynamic Coordination Space

Na Li1,3, Ze Chang1,3, Qiang Chen1,3, Jiacheng Yin1,3, Xian-He Bu1,2,3,**()   

  1. 1. School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
    2. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
    3. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China
  • Received:2018-12-05 Revised:2018-12-25 Online:2019-01-04 Published:2019-01-04
  • Contact: Xian-He Bu
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21421001); The work was supported by the National Natural Science Foundation of China(21531005); The Programme of Introducing Talents of Discipline to Universities(B18030)

“配位空间”(Coordination Space)是无机-有机杂化体系中的构筑基元通过配位键连接形成的具有特定结构和功能的空间。这一概念为基于配位键的框架体系的定向构筑与结构-性能调控提供了新的视角。作为典型的无机-有机杂化材料,金属-有机框架(Metal-Organic Framework,MOF)及金属有机笼(Metal-Organic Cage,MOC)等近年来受到广泛关注。这类材料的构筑与性能调控的核心可以认为是对其配位空间的结构设计与性能调控。具有刺激响应性的MOF可展现动态的配位空间,使其在吸附分离、传感、药物投递等方面具有重要的应用前景。本文将以动态金属有机框架的相关研究为基础简述动态配位空间研究的近期进展,包括其动态行为产生的结构基础、诱发因素及相关性能,归纳结构-性能的关系,为相关研究提供参考。

“Coordination space” is the space with specific structure and functions, which is defined by the coordination bonded structural elements of inorganic-organic hybrid system. This concept provides a new perspective for the research on the targeted construction and modulation of coordinative hybrid materials. As typical inorganic-organic hybrid materials, Metal-Organic Framework (MOF) and Metal-Organic Cage (MOC) have attracted widespread attention in recent years. The key point of targeted construction and regulation of could be regarded as the design of their coordination space. The stimuli-responsive MOFs possess dynamic coordination space, which promote their potential applications in adsorption/separation, sensing, drug delivery, and related fields. Based on the well-developed research of dynamic of metal-organic framework, herein we briefly introduce the recent progress in dynamic coordinate space, including the structure foundation and stimulating factors for the achievement of dynamic behaviors, the relationship between the structure and properties of this kind of material, which could be instructive useful references for related research investigation.

()
图1 配体构型变化导致MOFs的结构改变[43,44]
Fig.1 Structural changes of MOFs via the configuration flexibility of ligand[43, 44]
图2 (a) bpa配体中C—C键旋转导致层间距离缩短,(b) 伴随框架动态行为的孔结构的可逆收缩和扩大[45]
Fig.2 (a)Representations of the channels displaying the decrease of interlayer distance due to the rotation of C—C single bond of bpa pillar, (b) front view of the channels showing reversible contraction and expansion of the pore[45]
图3 通过柱配体构型调控实现动态结构调控[46]
Fig.3 Representations of the dramatic structural flexibility induced by flexible ligand as pillar[46]
图4 MIL-53动态结构转化前后框架和金属中心的变化[59, 60]
Fig.4 Schematic representation of the reversible transition of MIL-53 and the corresponding metal centers[59, 60]
图5 不同金属离子构筑的相同结构MOFs的动态行为[62]
Fig.5 Schematic representation of the different phase transition in MOFs based on different metal ions[62]
图6 基于阴离子调控的互穿框架的相对位移导致的动态行为[65]
Fig.6 The achievement of dynamic displacement of interpenetrated frameworks through anion modulation[65]
图7 客体分子诱导的MOF的动态行为[66]
Fig.7 The dynamic behaviors of MOFs induced by guest molecule[66]
图8 阳离子框架中阴离子诱导的晶体结构(a)和颜色(b)变化[40]
Fig.8 Anion induced structural transformation (a) and visual colorimetric anion sensing (b) in a cationic framework[40]
图9 MOF的选择性阴离子交换及相应的动态结构转化[67]
Fig.9 The selective anion exchange in MOF and the corresponding dynamic structure change[67]
图10 MIL-88框架收缩和膨胀情况下模拟的晶体结构变化 [69]
Fig.10 Simulated crystal structures of the MIL-88 framework in its contracted and open forms[69]
图11 [Ni(L)2(NO3)2·4(o-xylene)]的结构变化[70]
Fig.11 Structure transformation of [Ni(L)2(NO3)2·4(o-xylene)][70]
图12 温度诱导的Dy2-DMF到Dy2-CH3CN的结构变化和相应的磁性变化[71]
Fig.12 Temperature induced structural transformation between Dy2-DMF and Dy2-CH3CN and their magnetic variation[71]
图13 具有选择性客体响应的动态框架的示意图[72]
Fig.13 Schematic illustration of selective guest-responsive framework flexibility[72]
图14 配位分子诱导的结构变化[39]
Fig.14 SC-SC transformation upon lost/recovery of coordinative guests[39]
图15 溶剂诱导MUV-2的动态结构转化行为及相应状态的循环伏安图谱[74]
Fig.15 Schematic representation of the breathing behavior of MUV-2 upon solvent adsorption and the corresponding solid-state cyclic voltammetry (CV) of MUV-2[74]
图16 基于动态MOF的结构变化实现CO2/C2H2的高效分离[17]
Fig.16 The achievement of high performances CO2/C2H2 separation based on the structure transformation of dynamic MOF[17]
图17 客体诱导的MOF的连续动态行为[79]
Fig.17 Guest induced continuous breathing behavior of MOF[79]
图18 NU-1400在不同溶剂中的结构变化[80]
Fig.18 Structural changes of NU-1400 in different solvents[80]
图19 温度变化引发的MOF动态结构变化[81]
Fig.19 The dynamic structure transformation of MOF in response to temperature[81]
图20 温度引发多孔化合物的结构转化[82]
Fig.20 Structural transformations of the porous framework induced by the temperature variation[82]
图21 基于温度响应的阴离子客体与主体框架间超分子作用的动态金属-有机框架的结构及动态行为实现机理[41]
Fig.21 The structure of the dynamic MOF based on temperature responsive supramolecular interactions between the anion guest and host framework, and the scheme of the mechanism[41]
图22 基于偶氮苯基团构筑光响应MOF的方法[83]
Fig.22 Scheme presentation of the strategy for the construction of azo based photo-responsive dynamic MOF[83]
图23 基于光响应客体的MOF动态结构转化行为[86]
Fig.23 The dynamic structure transformation of MOF based on photo-responsive guest molecules[86]
图24 光响应动态MOF实现可控的CO2捕获和释放[87]
Fig.24 The controllable capture and release of CO2 based on photo-responsive dynamic MOF[87]
图25 基于光响应动态金属-有机框架实现高效C2H2/C2H4吸附分离[89]
Fig.25 The achievement of highly efficiency C2H2/C2H4 separation based on photo-responsive dynamic MOF[89]
图26 紫外和可见光照射下二芳基乙烯的光化学反应(a)和基于其构筑的动态MOF的光响应荧光发射特性(b)[88]
Fig.26 (a) Photochromic reaction of the diarylethene derivative under UV and visible light and (b) the photo-controlled tunable luminescence performance of the corresponding dynamic MOF[88]
图27 Co/Fe(bdp)在高压甲烷吸附中的结构变化以及Co(bdp)衍生物的高压吸附曲线[93, 94]
Fig.27 A reversible phase transition in Co/Fe(bdp) in response to CH4 pressures and high-pressure gas adsorption isotherms of flexible Co(bdp) derivatives[93, 94]
图28 压力引发动态MOF的颜色变化[95]
Fig.28 Pressure changes the color of a new type of dynamic MOF[95]
图29 压力引发MOF颜色变化及其光致变色性质[96]
Fig.29 Pressure induced dynamic MOF with changing colour and its hypochromic effect[96]
图30 通过中子粉末衍射谱图(a)模拟的298 K时吸附C2D2的化合物ELM-12·2.5C2D2的结构(c)。(b, d)为ELM-12对C2D2的两种最佳的吸附位点[106]
Fig.30 (a, c) Rietveld refinement of the neutron powder diffraction ELM-12·2.5C2D2 at 298 K, (b, d) the two preferential binding sites for C2D2 adsorption (sites Ⅰ and Ⅱ) in ELM-12[106]
图31 利用高压129Xe NMR方法原位测定的动态MOF的结构转化[111]
Fig.31 In situ monitoring of structural transformation of dynamic MOF characterised by high-pressure129Xe NMR spectroscopy[111]
图32 基于原位Raman光谱研究动态金属-有机框架结构转化过程中的配位键变化[61]
Fig.32 The characterization of the coordination bonding in the structure transformation process of dynamic MOF according to in-situ Raman spectra[61]
图33 DUT-8(Ni)的拉曼光谱[112]
Fig.33 Raman spectra of DUT-8(Ni)[112]
图34 基于原位拉曼和红外光谱研究动态金属-有机框架结构转化[114]
Fig.34 The transformation process of dynamic MOF characterized by in-situ IR and Raman spectra[114]
图35 不同条件下单个MIL-53(Cr)纳米晶的原位ETEM和电子衍射图谱[118]
Fig.35 In situ ETEM images and diffraction patterns of MIL-53(Cr) nanocrystal at different conditions[118]
[1]
Kitagawa S, Matsuda R Coord. Chem. Rev., 2007,251:2490.
[2]
Uemura T, Horike S, Kitagawa S . Chem. Asian J., 2006,1:36.
[3]
Moghadam P Z, Li A, Wiggin S B, Tao A, Maloney A G P, Wood P A, Ward S C, Fairen-Jimenez D . Chem. Mater., 2017,29:2618.
[4]
Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K . Chem. Soc. Rev., 2017,46:3242.
[5]
Burtch N C, Jasuja H, Walton K S . Chem. Rev., 2014,114:10575.
[6]
He Y, Krishna R, Chen B . Energy Environ Sci., 2012,5:9107.
[7]
Zhang J, Wu T, Chen S, Feng P Bu X, . Angew. Chem. Int.Ed, 2009,48:3486.
[8]
Wang B, Cote A P, Furukawa H, O'Keeffe M, Yaghi O M . Nature, 2008,453:207.
[9]
Seki K . Phys. Chem. Chem.Phys., 2002,4:1968.
[10]
Suh M P, Ko J W, Choi H J . J.Am. Chem. Soc., 2002,124:10976.
[11]
Kitaura R, Seki K, Akiyama G, Kitagawa S . Angew. Chem.Int Ed., 2003,115:444.
[12]
Dybtsev D N, Chun H, Kim K . Angew. Chem. Int.Ed., 2004,43:5033.
[13]
Uemura K, Matsuda R, Kitagawa S . J.Solid State Chem., 2005,178:2420.
[14]
Kitagawa S, Kitaura R, Noro S . Angew. Chem. Int. Ed., 2004,43:2334.
[15]
Horike S, Shimomura S, Kitagawa S . Nat.Chem, 2009,1:695.
[16]
Seo J, Matsuda R, Sakamoto H, Bonneau C, Kitagawa S . J. Am. Chem. Soc., 2009,131:12792.
[17]
Foo M L, Matsuda R, Hijikata Y, Krishna R, Sato H, Horike S, Hori A, Duan J, Sato Y, Kubota Y, Takata M, Kitagawa S . J.Am. Chem. Soc., 2016,138:3022.
[18]
Chen C L, Goforth A M, Smith M D, Su C Y, zur Loye H C . Angew. Chem. Int. Ed., 2005,44:6673.
[19]
Ghosh S K, Kaneko W, Kiriya D, Ohba M, Kitagawa S . Angew. Chem. Int. Ed., 2008,47:8843.
[20]
Zhang J P, Zhou H L, Zhou D D, Liao P Q, Chen X M . Nat. Sci. Rev., 2018,5:907.
[21]
Bu X H, Chen W, Lu S L, Zhang R H, Liao D Z, Bu W M, Shionoya M, Brisse F, Ribas J . Angew. Chem. Int. Ed., 2001,40:3201.
[22]
Sasa M, Tanaka K, Bu X H, Shiro M, Shionoya M . J. Am. Chem. Soc., 2001,123:10750.
[23]
Bu X H, Tong M L, Chang H C, Kitagawa S, Batten S R . Angew. Chem. Int. Ed., 2004,43:192.
[24]
Li J R, Yu Q, Sanudo E C, Tao Y, Bu X H . Chem. Commun., 2007,25:2602.
[25]
Li J R, Yu Q, Tao Y, Bu X H, Ribas J, Batten S R . Chem.Commun., 2007,0:2290
[26]
Zeng Y F, Hu X, Liu F C, Bu X H . Chem. Soc. Rev., 2009,38:469.
[27]
杜淼 (Du M), 卜显和 (Bu X H). 化学进展( Prog. Chem.), 2009,21:2458.
[28]
Canadillas Delgado L, Fabelo O Alberto Rodriguez Velamazan J, Lemee Cailleau M H, Mason S A, Pardo E, Lloret F, Zhao J P, Bu X H, Simonet V, Colin C V, Rodriguez Carvajal J . J. Am. Chem. Soc., 2012,134:19772.
[29]
Han S D, Zhao J P, Liu S J, Bu X H . Coord. Chem. Rev., 2015,289/290:32.
[30]
Li J R, Tao Y, Yu Q, Bu X H, Sakamoto H, Kitagawa S . Chem. Eur. J., 2008,14:2771.
[31]
Zhang D S, Chang Z, Li Y F, Jiang Z Y, Xuan Z H, Zhang Y H, Li J R, Chen Q, Hu T L, Bu X H . Sci.Rep., 2013,3:3312.
[32]
Wang H, Xu J, Zhang D S, Chen Q, Wen R M, Chang Z Bu X H, . Angew. Chem. Int.Ed., 2015,54:5966.
[33]
Tian D, Xu J, Xie Z J, Yao Z Q, Fu D L, Zhou Z, Bu X H. . Adv.Sci, 2016,3:1500283.
[34]
Zhao J P, Xu J, Han S D, Wang Q L Bu X H. , . Adv. Mater., 2017,29:1606966.
[35]
Li A L, Gao Q, Xu J, Bu X H. . Coord. Chem. Rev., 2017,344:54.
[36]
Zhang D S, Gao Q, Chang Z, Liu X T, Zhao B, Xuan Z H, Hu T L, Zhang Y H, Zhu J, Bu X H . Adv.Mater, 2018,30:1804715.
[37]
Li N, Feng R, Zhu J, Chang Z, Bu X H . Coord. Chem. Rev., 2018,375:558.
[38]
Gao Q, Xu J, Bu X H . Coord. Chem. Rev., 2019,378:17.
[39]
Chen Q, Chang Z, Song W C, Song H, Song H B, Hu T L, Bu X H . Angew. Chem. Int.Ed., 2013,52:11550.
[40]
Chen Y Q, Li G R, Chang Z, Qu Y K, Zhang Y H, Bu X H . Chem. Sci., 2013,4:3678.
[41]
Gao Q, Xu J, Cao D, Chang Z, Bu X H . Angew. Chem. Int. Ed., 2016,55:15027.
[42]
Chang Z, Yang D H, Xu J, Hu T L, Bu X H . Adv. Mater., 2015,27:5432.
[43]
Alberti G, Murcia Mascarós S, Vivani R . J. Am. Chem. Soc., 1998,120:9291.
[44]
Férey G, Serre C . Chem. Soc. Rev., 2009,38:1380.
[45]
Li X L, Liu G Z, Xin L Y, Wang L Y . CrystEngComm, 2012,14:5757.
[46]
Bloch W M, Burgun A, Coghlan C J, Lee R, Coote M L, Doonan C J, Sumby C J . Nat. Chem., 2014,6:906.
[47]
Henke S, Schneemann S, Siskos M G . Chem. Commun., 2011,47:7140.
[48]
Michaelides A, Skoulika S, Siskos M G . Chem. Commun., 2011,47:7140.
[49]
Ou Y C, Zhi D S, Liu W T, Ni Z P, Tong M L . Chem.Eur. J., 2012,18:7357.
[50]
Morris R E, Brammer L . Chem. Soc. Rev., 2017,46:5444.
[51]
Ghoufi A, Benhamed K, Boukli Hacene L, Maurin G . ACS Cent Sci., 2017,3:394.
[52]
Millange F, Guillou N, Medina M E, Férey G, Carlin Sinclair A, Golden K M, Walton R I . Chem. Mater., 2010,22:4237.
[53]
Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G . Chem. Eur. J., 2004,10:1373.
[54]
Couck S, Gobechiya E Kirschhock C E A, Serra Crespo P, Juan Alcaniz J, Martinez Joaristi A, Stavitski E, Gascon J, Kapteijn F, Baron G V, Denayer J F M , ChemSusChem, 2012,5:740.
[55]
Isaeva V I, Chernyshev V V, Tarasov A L, Lobova A A, Kapustin G I, Davshan N A . Russ. J. Phys. Chem. 2018,92:2386.
[56]
Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G, Daturi M, Lavalley J C, Loera Serna S, Denoyel R, Llewellyn P L, Férey G . J.Am. Chem. Soc., 2010,132:9488.
[57]
Llewellyn P L, Horcajada P, Maurin G, Devic T, Rosenbach N, Bourrelly S, Serre C, Vincent D, Loera Serna S, Filinchuk Y, Férey G . J. Am. Chem. Soc., 2009,131:13002.
[58]
Llewellyn P L, Maurin G, Devic T, Loera Serna S, Rosenbach N, Serre C, Bourrelly S, Horcajada P, Filinchuk Y, Férey G . J. Am. Chem. Soc., 2008,130:12808.
[59]
Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G . J. Am. Chem. Soc., 2002,124:13519.
[60]
Murdock C R, Hughes B C, Lu Z, Jenkins D M . Coord. Chem. Rev., 2014,258:119.
[61]
Seo J, Bonneau C, Matsuda R, Takata M, Kitagawa S . J. Am. Chem. Soc., 2011,133:9005.
[62]
Schneemann A, Vervoorts P, Hante I, Tu M, Wannapaiboon S, Sternemann C, Paulus M Wieland D C F, Henke S, Fischer R A . Chem. Mater., 2018,30:1667.
[63]
Takashima Y, Martínez V M, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K, Kitagawa S . Nat.Commun, 2011,2:168.
[64]
Mulfort K L, Hupp J T . J. Am. Chem. Soc., 2007,129:9604.
[65]
Maji T K, Matsuda R, Kitagawa S. Nat. Mater ., 2007,6:142.
[66]
Kitagawa S, Uemura K . Chem. Soc. Rev., 2005,34:109.
[67]
Karmakar A, Manna B, Desai A V, Joarder B Ghosh S K, . Inorg. Chem., 2014,53:12225.
[68]
Ke S Y, Wang C C . CrystEngComm, 2015,17:8776.
[69]
Mellot Draznieks C, Serre C, Surblé S, Audebrand N, Férey G . J. Am. Chem. Soc., 2005,127:16273.
[70]
Biradha K, Hongo Y Fujita M, . Angew. Chem. Int.Ed., 2002,41:3395.
[71]
Zhang X, Vieru V, Feng X, Liu J L, Zhang Z, Na B, Shi W, Wang B W, Powell A K, Chibotaru L F, Gao S, Cheng P Long J R, . Angew. Chem. Int. Ed., 2015,54:9861.
[72]
Mukherjee S, Joarder B, Manna B, Desai A V, Chaudhari A K Ghosh S K, . Sci. Rep., 2014,4:5761.
[73]
Chen Q, Feng R, Xu J, Jia Y Y, Wang T T, Chang Z Bu X H, . ACS Appl.Mater Interfaces, 2017,9:35141.
[74]
Souto M, Romero J, Calbo J, Vitórica Yrezábal I J, Zafra J L, Casado J, Ortí E, Walsh A, Mínguez Espallargas G . J. Am. Chem. Soc., 2018,140:10562.
[75]
Hyun S M, Lee J H, Jung G Y, Kim Y K, Kim T K, Jeoung S, Kwak S K, Moon D Moon H R, . Inorg. Chem., 2016,55:1920.
[76]
Li L, Krishna R, Wang Y, Yang J, Wang X, Li J . J. Mater. Chem.A, 2016,4:751.
[77]
Li X, Chen X, Jiang F, Chen L, Lu S, Chen Q, Wu M, Yuan D, Hong M . Chem.Commun, 2016,52:2277.
[78]
Zhao Y P, Li Y, Cui C Y, Xiao Y, Li R, Wang S H, Zheng F K Guo G C, . Inorg. Chem., 2016,55:7335.
[79]
Carrington E J, McAnally C A, Fletcher A J, Thompson S P, Warren M, Brammer L . Nat. Chem., 2017,9:882.
[80]
Zhang Y, Zhang X, Lyu J, Otake K I, Wang X, Redfern L R, Malliakas C D, Li Z, Islamoglu T, Wang B, Farha O K . J. Am. Chem. Soc., 2018,140:11179.
[81]
Henke S, Schneemann A, Fischer R A . Adv. Funct. Mater., 2013,23:5990.
[82]
Zhu M, Song X Z, Song S Y, Zhao S N, Meng X, Wu L L, Wang C, Zhang H J . Adv. Sci., 2015,2:1500012.
[83]
Modrow A, Zargarani D, Herges R, Stock N . Dalton Trans, 2011,40:4217.
[84]
Park J, Yuan D, Pham K T, Li J R, Yakovenko A, Zhou H C . J. Am. Chem. Soc., 2012,134:99.
[85]
Brown J W, Henderson B L, Kiesz M D, Whalley A C, Morris W, Grunder S, Deng H, Furukawa H, Zink J I, Stoddart J F, Yaghi O M . Chem. Sci., 2013,4:2858.
[86]
Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S . J. Am. Chem. Soc., 2012,134:4501.
[87]
Lyndon R, Konstas K, Ladewig B P, Southon P D, Kepert P C J, Hill M R . Angew. Chem. Int. Ed., 2013,52:3695.
[88]
Luo F, Fan C B, Luo M B, Wu X L, Zhu Y, Pu S Z, Xu W Y, Guo G C . Angew. Chem. Int. Ed., 2014,53:9298.
[89]
Fan C B, Le Gong L, Huang L, Luo F, Krishna R, Yi X F, Zheng A M, Zhang L, Pu S Z, Feng X F, Luo M B Guo G C, . Angew. Chem. Int. Ed., 2017,56:7900.
[90]
Wharmby M T, Henke S, Bennett T D, Bajpe S R, Schwedler I, Thompson S P, Gozzo F, Simoncic P, Mellot Draznieks C, Tao H, Yue Y, Cheetham A K . Angew. Chem. Int. Ed., 2015,54:6447.
[91]
Cao S, Bennett T D, Keen D A, Goodwin A L, Cheetham A K . Chem. Commun., 2012,48:7805.
[92]
Spencer E C, Kiran M S R N, Li W, Ramamurty U, Ross N L, Cheetham A K . Angew. Chem. Int. Ed., 2014,53:5583.
[93]
Mason J A, Oktawiec J, Taylor M K, Hudson M R, Rodriguez J, Bachman J E, Gonzalez M I, Cervellino A, Guagliardi A, Brown C M, Llewellyn P L, Masciocchi N, Long J R . Nature, 2015,527:357.
[94]
Taylor M K, Runcevski T, Oktawiec J, Gonzalez M I, Siegelman R L, Mason J A, Ye J, Brown C M, Long J R . J. Am. Chem. Soc., 2016,138:15019.
[95]
Andrzejewski M, Katrusiak A . J. Phys. Chem. Lett., 2017,8:279.
[96]
Andrzejewski M, Casati N, Katrusiak A . Dalton Trans, 2017,46:14795.
[97]
Allan P K, Xiao B, Teat S J, Knight J W, Morris R E . J. Am. Chem. Soc., 2010,132:3605.
[98]
Miller S R, Wright P A, Devic T, Serre C, Férey G, Llewellyn P L, Denoyel R, Gaberova L, Filinchuk Y . Langmuir, 2009,25:3618.
[99]
Bhatt P M, Batisai E, Smith V J Barbour L J, . Chem. Commun., 2016,52:11374.
[100]
Kondo M, Furukawa S, Hirai K, Tsuruoka T, Reboul J, Uehara H, Diring S, Sakata Y, Sakata O, Kitagawa S . J. Am. Chem. Soc., 2014,136:4938.
[101]
Zhang J P, Liao P Q, Zhou H L, Lin R B, M . Chem. Soc. Rev., 2014,43:5789.
[102]
Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kobayashi T C . Angew.Chem Int. Ed, 2006,45:4932.
[103]
Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker J E, Tang C C, Allan D R, Rizkallah P J, Hubberstey P, Champness N R, Mark Thomas K, Blake A J, Schröder M . Nat.Mater, 2012,11:710.
[104]
Hamon L, Llewellyn P L, Devic T, Ghoufi A, Clet G, Guillerm V, Pirngruber G D, Maurin G, Serre C Driver G, van Beek W, Jolimaître E, Vimont A, Daturi M, Férey G . J. Am. Chem. Soc., 2009,131:17490.
[105]
Mulder F M, Assfour B, Huot J, Dingemans T J, Wagemaker M, Ramirez-Cuesta A J . J. Phys. Chem C, 2010,114:10648.
[106]
Li L, Lin R B, Krishna R, Wang X, Li B, Wu H, Li J, Zhou W, Chen B . J. Mater. Chem.A, 2017,5:18984.
[107]
Walton R I, Munn A S, Guillou N, Millange F . Chem.Eur.J, 2011,17:7069.
[108]
Chen L, Mowat J P S, Fairen-Jimenez D, Morrison C A, Thompson S P, Wright P A, Düren T . J.Am. Chem. Soc., 2013,135:15763.
[109]
Hoffmann H C, Assfour B, Epperlein F, Klein N, Paasch S, Senkovska I, Kaskel S, Seifert G, Brunner E . J. Am. Chem. Soc., 2011,133:8681.
[110]
Springuel-Huet M A, Nossov A, Guenneau F, Gédéon A . Chem. Commun., 2013,49:7403.
[111]
Schaber J, Krause S, Paasch S, Senkovska I, Bon V, Toebbens D M, Wallacher D, Kaskel S, Brunner E . J. Phys. Chem. C, 2017,121:5195.
[112]
Krylov A, Vtyurin A, Petkov P, Senkovska I, Maliuta M, Bon V, Heine T, Kaskel S, Slyusareva E . Phys. Chem. Chem.Phys., 2017,19:32099.
[113]
Yang S, Liu L, Sun J, Thomas K M, Davies A J, George M W, Blake A J, Hill A H, Fitch A N, Tang C C, Schröder M . J. Am. Chem. Soc., 2013,135:4954.
[114]
Hoffman A E J, Vanduyfhuys L, Nevjestic I, Wieme J, Rogge S M J, Depauw H, Van Der Voort P, Vrielinck H, Van Speybroeck V . J. Phys. Chem.C, 2018,122:2734.
[115]
Bordiga S, Bonino F, Lillerud K P , Lamberti C. Chem. Soc. Rev., 2010,39:4885.
[116]
Chen Y, Zhang J, Li J, Lockard J V . J. Phys. Chem.C, 2013,117:20068.
[117]
Grünker R, Senkovska I, Biedermann R, Klein N, Lohe M R, Müller P, Kaskel S . Chem.Commun, 2011,47:490.
[118]
Parent L R, Pham C H, Patterson J P, Denny M S, Cohen S M, Gianneschi N C, Paesani F . J. Am. Chem. Soc., 2017,139:13973.
[119]
Ortiz A U, Boutin A, Fuchs A H, Coudert F X . Phys. Rev. Lett., 2012,109:195502.
[120]
Bousquet D, Coudert F X, Fossati A G J, Neimark A V, Fuchs A H, Boutin A . J.Chem. Phys., 2013,138:174706.
[121]
Neimark A V, Coudert F X, Boutin A, Fuchs A H . J. Phys. Chem. Lett., 2010,1:445.
[122]
Triguero C, Coudert F X, Boutin A, Fuchs A H, Neimark A V . J. Chem. Phys., 2012,137:184702.
[123]
Triguero C, Coudert F X, Boutin A, Fuchs A H, Neimark A V . J. Phys. Chem. Lett., 2011,2:2033.
[124]
Coudert F X, Mellot-Draznieks C, Fuchs A H, Boutin A . J. Am. Chem. Soc., 2009,131:11329.
[125]
Ortiz A U, Springuel-Huet M A, Coudert F X, Fuchs A H, Boutin A . Langmuir, 2012,28:494.
[126]
Coudert F X . Phys. Chem. Chem. Phys., 2010,12:10904.
[127]
Hamon L, Leclerc H, Ghoufi A, Oliviero L, Travert A, Lavalley J C, Devic T, Serre C, Férey G, De Weireld G, Vimont A, Maurin G . J. Phys. Chem.C, 2011,115:2047.
[128]
Salles F, Bourrelly S, Jobic H, Devic T, Guillerm V, Llewellyn P, Serre C, Férey G, Maurin G . J. Phys. Chem.C, 2011,115:10764.
[129]
Rives S, Jobic H, Kolokolov D I, Gabrienko A A, Stepanov A G, Ke Y, Frick B, Devic T, Férey G, Maurin G . J. Phys. Chem.C, 2013,117:6293.
[130]
Salles F, Jobic H, Devic T, Guillerm V, Serre C, Koza M M, Férey G, Maurin G . J. Phys. Chem.C, 2013,117:11275.
[131]
Rosenbach N, Jr,Jobic H, Ghoufi A, Devic T, Koza M M, Ramsahye N, Mota C J, Serre C, Maurin G . J. Phys. Chem. C, 2014,118:14471.
[1] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[4] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[5] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[6] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[7] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[8] 赵田*, 董茗, 赵熠, 刘跃军*. 纳米金属-有机框架材料的制备及应用[J]. 化学进展, 2017, 29(10): 1252-1259.
[9] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[10] 陈茂龙, 尹帮少, 宋建新. 铃木偶联反应构筑卟啉阵列的研究进展[J]. 化学进展, 2015, 27(6): 641-654.
[11] 戴昉纳*, 柳云骐, 崔敏, 王宗廷, 冯锡兰. 金属-有机纳米管[J]. 化学进展, 2013, 25(01): 69-76.
[12] 夏荣捷, 金明, 万德成, 潘海燕, 浦鸿汀. 双光子技术在光生酸剂中的应用研究[J]. 化学进展, 2011, 23(9): 1854-1861.
[13] 郭建 庄顺 吴凯强 袁耀锋. 神奇的构筑块二茂铁炔基在光电功能分子中的应用*[J]. 化学进展, 2009, 21(12): 2589-2594.
阅读次数
全文


摘要

动态配位空间的构筑与调控