English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 641-654 DOI: 10.7536/PC141211 前一篇   后一篇

• 超分子化学专辑 •

铃木偶联反应构筑卟啉阵列的研究进展

陈茂龙, 尹帮少, 宋建新*   

  1. 湖南师范大学化学生物学与中药分析教育部重点实验室 湖南师范大学有机功能分子组装与应用重点实验室 长沙 410081
  • 收稿日期:2014-12-01 修回日期:2015-01-01 出版日期:2015-06-15 发布日期:2015-03-16
  • 通讯作者: 宋建新 E-mail:jxsong@hunnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21272065),教育部留学回国基金,湖南省高校创新平台开放基金项目(No.13k027),湖南省高校科技创新团队支持计划和湖南省教育厅高校“省重点学科建设项目”资助

Recent Development of Constructing Porphyrin Arrays via Suzuki-Miyaura Cross-Coupling Reaction

Chen Maolong, Yin Bangshao, Song Jianxin*   

  1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules, Hunan Normal University, Changsha 410081, China
  • Received:2014-12-01 Revised:2015-01-01 Online:2015-06-15 Published:2015-03-16
  • Contact: 10.7536/PC141211 E-mail:jxsong@hunnu.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21272065), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Scientific Research Fund of Hunan Provincial Educational Department (No. 13k027), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Construct Program of the Key Discipline in Hunan Province.
卟啉阵列是通过桥接单元或键组装而成的多卟啉体系,其电子性质取决于桥接单元以及卟啉连接的位置。由于电子相互作用的卟啉阵列在光电子器件、传感器、光伏电池、非线性光学材料以及光动力治疗的染料等方面的潜在应用价值,在过去的几十年中,科学家们对其进行了大量探索。卟啉阵列的构筑主要包括非共价组装与共价组装两种方式,前者相对容易但构筑的阵列稳定性较差,后者相对较难但构筑的阵列稳定性较好。铃木偶联是指用零价钯催化卤代烃与烃基硼酸或硼酸酯交叉偶联的反应,它是构筑结构多样、性质各异的卟啉阵列的有效手段。本文主要对其近年来在构筑多卟啉阵列方面的研究进展进行综述。最后,展望了铃木偶联构筑卟啉阵列的发展趋势。
Porphyrin arrays are multiporphyrinic systems which assembled either by bridging units or bonds. The electronic properties of porphyrin arrays depend on the bridging units and the bridging positions on porphyrins. In the last two decades, electronically interacting multiporphyrinic systems have been actively explored due to their potential applications in optoelectronic devices, sensors, photovoltaic devices, nonlinear optical materials, and photodynamic therapy pigments. Porphyrin arrays can be constructed by means of noncovalent bonds or covalent bonds, the former is easy but the assembled array is unstable while the latter is opposite. The Suzuki-Miyaura coupling reaction is classified as a coupling reaction where the coupling partners are a boronic acid or borate ester with a halide catalyzed by a palladium (0) complex. It is an efficient method to construct porphyrin arrays with diversity structures and different properties. In this review, the emphasis has been placed upon the progress in the construction of the porphyrin arrays via Suzuki-Miyaura reaction. At last, we prospect the development trend of constructing porphyrin arrays via Suzuki-Miyaura coupling reaction.

Contents
1 Introduction
2 meso-meso bridged porphyrin arrays
3 meso-β bridged porphyrin arrays
4 β-β bridged porphyrin arrays
5 Conclusion and outlook

中图分类号: 

()
[1] Tanaka T, Osuka A. Chem. Soc. Rev., 2015, 44: 943.
[2] Li W S, Aida T. Chem. Rev., 2009, 109: 6047.
[3] (a) Cuesta L, Sessler J L. Chem. Soc. Rev., 2009, 38: 2716.; (b) Faiz J A, Heitz V, Sauvage J P. Chem. Soc. Rev., 2009, 38: 422.; (c) Gao W Y, Chrzanowski M, Ma S. Chem. Soc. Rev., 2014, 43: 5841.
[4] Ethirajan M, Chen Y, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40: 340.
[5] Li L L, Diau E W. Chem. Soc. Rev., 2013, 42: 291.
[6] (a) D'Souza F, Subbaiyan N K, Xie Y, Hill J P, Ariga K, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc., 2009, 131: 16138.; (b) Xie Y, Hill J P, Schumacher A L, Sandanayaka A S D, Araki Y, Karr P A, Labuta J, D'Souza F, Ito O, Anson C E, Powell A K, Ariga K. J. Phys. Chem. C, 2008, 112: 10559.
[7] (a) Urbani M, Michael Grätzel M, Nazeeruddin M K, Torres T. Chem. Rev., 2014, 114: 12330.; (b) Wang Y, Chen B, Wu W, Li X, Zhu W, Tian H, Xie Y. Angew. Chem. Int. Ed., 2014, 53: 10779.; (c) Sun X, Wang Y, Li X, Ögren H, Zhu W, Tian H, Xie Y. Chem. Commun., 2014, 50: 15609.
[8] Beletskaya I P, Ananikov V P. Chem. Rev., 2011, 111: 1596.
[9] Jana R, Pathak T P, Sigman M S. Chem. Rev., 2011, 111: 1417.
[10] Liu C, Zhang H, Shi W, Lei A. Chem. Rev., 2011, 111: 1780.
[11] Roglans A, Pla-Quintana A, Moreno-Maas M. Chem. Rev., 2006, 106: 4622.
[12] Han F S. Chem. Soc. Rev., 2013, 42: 5270.
[13] Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett., 1979, 20: 3437.
[14] Miyaura N, Suzuki A. Chem. Commun., 1979: 866.
[15] Miyaura N, Suzuki A. Chem. Rev., 1995, 95: 2457.
[16] Nobelprize.org In Nobel Prize Foundation . http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/, 2010.
[17] Kurotobi K, Osuka A. Org. Lett., 2005, 7: 1055.
[18] Li B, Li J, Fu Y, Bo Z. J. Am. Chem. Soc., 2004, 126: 3430.
[19] Barker C A, Zeng X, Bettington S, Batsanov A S, Bryce M R, Beeby A. Chem. A Eur. J, 2007, 13: 6710.
[20] Yamaguchi S, Katoh T, Shinokubo H, Osuka A. J. Am. Chem. Soc., 2007, 129: 6392.
[21] Yamaguchi S, Katoh T, Shinokubo H, Osuka A. J. Am. Chem. Soc., 2008, 130: 14440.
[22] Agarwal N. Dyes and Pigments, 2009, 83: 328.
[23] Ali H, Ait-Mohand S, Gosselin S, van Lier J E, Guerin B. J. Org. Chem., 2011, 76: 1887.
[24] Arnold L, Baumgarten M, Mullen K. Chem. Commun., 2012, 48: 9640.
[25] Michalak J, Birin K P, Muniappan S, Ranyuk E, Enakieva Y Y, Gorbunova Y G, Stern C, Bessmertnykh-Lemeune A, Guilard R. J. Porphyrins Phthalocyanines, 2014, 18: 35.
[36] Hwang I W, Kamada T, Ahn T K, Ko D M, Nakamura T, Tsuda A, Osuka A, Kim D. J. Am. Chem. Soc., 2004, 126: 16187.
[27] Mori S, Kim K S, Yoon Z S, Noh S B, Kim D, Osuka A. J. Am. Chem. Soc., 2007, 129: 11344.
[28] Tsurumaki E, Inokuma Y, Easwaramoorthi S, Lim J M, Kim D, Osuka A. Chem. Eur. J., 2009, 15: 237.
[29] Hayashi S Y, Inokuma Y, Osuka A. Org. Lett., 2010, 12: 4148.
[30] Kitano M, Hayashi S Y, Tanaka T, Yorimitsu H, Aratani N, Osuka A. Angew. Chem. Int. Ed., 2012, 51: 5593.
[31] Berg S, Thomas K F, Beavers C M, Ghosh A. Inorg. Chem., 2012, 51: 9911.
[32] Aratani N, Cho H S, Ahn T K, Cho S, Kim D, Sumi H, Osuka A. J. Am. Chem. Soc., 2003, 125: 9668.
[33] Tsuda A, Osuka A. Science, 2001, 293: 79.
[34] Aratani N, Takagi A, Yanagawa Y, Matsumoto T, Kawai T, Yoon Z S, Kim D, Osuka A. Chem. Eur. J., 2005, 11: 3389.
[35] Peng X, Komatsu N, Kimura T, Osuka A. J. Am. Chem. Soc., 2007, 129: 15947.
[36] Kozaki M, Uetomo A, Suzuki S, Okada K. Org. Lett., 2008, 10: 4477.
[37] Aratani N, Osuka A. Chem. Commun., 2008, 4067.
[38] Maeda C, Shinokubo H, Osuka A. Org. Lett., 2010, 12: 1820.
[39] Song J, Aratani N, Shinokubo H, Osuka A. Chem. Eur. J., 2010, 16: 13320.
[40] Osawa K, Song J, Furukawa K, Shinokubo H, Aratani N, Osuka A. Chem. Asian J., 2010, 5: 764.
[41] Jiang H W, Ham S, Aratani N, Kim D, Osuka A. Chem. Eur. J., 2013, 19: 13328.
[42] Tamaki T, Nosaka T, Ogawa T. J. Org. Chem., 2014, 79: 11029.
[43] Hiroto S, Hisaki I, Shinokubo H, Osuka A. Angew. Chem. Int. Ed., 2005, 44: 6763.
[44] Hata H, Shinokubo H, Osuka A. J. Am. Chem. Soc., 2005, 127: 8264.
[45] Ikeda T, Aratani N, Easwaramoorthi S, Kim D, Osuka A. Org. Lett., 2009, 11: 3080.
[46] Heo J H, Ikeda T, Lim J M, Aratani N, Osuka A, Kim D. J. Phys. Chem. B, 2010, 114: 14528.
[47] Song J, Aratani N, Kim P, Kim D, Shinokubo H, Osuka A. Angew. Chem. Int. Ed., 2010, 49: 3617.
[48] Song J, Anabuki S, Aratani N, Shinokubo H, Osuka A. Chem. Lett., 2011, 40: 902.
[49] Bringmann G, Goetz D C G, Gulder T A M, Gehrke T H, Bruhn T, Kupfer T, Radacki K, Braunschweig H, Heckmann A, Lambertt C. J. Am. Chem. Soc., 2008, 130: 17812.
[50] Song J, Jang S Y, Yamaguchi S, Sankar J, Hiroto S, Aratani N, Shin J Y, Easwaramoorthi S, Kim K S, Kim D, Shinokubo H, Osuka A. Angew. Chem. Int. Ed., 2008, 47: 6004.
[51] Song J, Aratani N, Shinokubo H, Osuka A. Chem. Sci., 2011, 2: 748.
[52] Song J, Kim P, Aratani N, Kim D, Shinokubo H, Osuka A. Chem. Eur. J., 2010, 16: 3009.
[53] Song J, Aratani N, Heo J H, Kim D, Shinokubo H, Osuka A. J. Am. Chem. Soc., 2010, 132: 11868.
[54] Song J, Aratani N, Shinokubo H, Osuka A. J. Am. Chem. Soc., 2010, 132: 16356.
[55] Cunha A C, Gomes A T P C, Ferreira V F, de Souza M C B V, Neves M G P M S, Tome A C, Silva A M S, Cavaleiro J A S. Synthesis, 2010: 510.
[56] Ikeda S, Aratani N, Osuka A. Chem. Commun., 2012, 48: 4317.
[57] Hao Q, Zeng Y, Yu T, Chen J, Yang G, Li Y. Chem. Asian J., 2013, 8: 1015.
[58] Cai H, Fujimoto K, Lim J M, Wang C, Huang W, Rao Y, Zhang S, Shi H, Yin B, Chen B, Ma M, Song J, Kim D, Osuka A. Angew. Chem. Int. Ed., 2014, 53: 11088.
[1] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[2] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[3] 李娜, 常泽, 陈强, 尹佳成, 卜显和. 动态配位空间的构筑与调控[J]. 化学进展, 2019, 31(1): 10-20.
[4] 戴昉纳*, 柳云骐, 崔敏, 王宗廷, 冯锡兰. 金属-有机纳米管[J]. 化学进展, 2013, 25(01): 69-76.
[5] 夏荣捷, 金明, 万德成, 潘海燕, 浦鸿汀. 双光子技术在光生酸剂中的应用研究[J]. 化学进展, 2011, 23(9): 1854-1861.
[6] 郭建 庄顺 吴凯强 袁耀锋. 神奇的构筑块二茂铁炔基在光电功能分子中的应用*[J]. 化学进展, 2009, 21(12): 2589-2594.
[7] 刘冰,陈海涛,钱东金. 界面组装金属—多卟啉阵列结构及其纳米晶*[J]. 化学进展, 2007, 19(06): 872-877.