English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1697-1709 DOI: 10.7536/PC200407 前一篇   后一篇

• •

金属-有机框架材料在光催化二氧化碳还原中的应用

封啸1, 任颜卫1,**(), 江焕峰1,**()   

  1. 1. 华南理工大学化学与化工学院 广东省功能分子工程重点实验室 广州 510641
  • 修回日期:2020-06-10 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 任颜卫, 江焕峰
  • 作者简介:

    任颜卫

    博士,副教授,硕士生导师。分别于2000年和2006年毕业于西北大学化学系,获学士学位和博士学位。2006~2008年在香港科技大学从事博士后研究。2008年进入华南理工大学工作。2017~2018年美国罗格斯大学访问学者。研究方向:MOFs基多相催化材料的设计合成与应用。

    江焕峰

    博士,教授,博士生导师。1993年获中科院上海有机所博士学位。1993~2003年在中国科学院广州化学研究所从事科研工作。2004年加入华南理工大学工作。2006年国家杰出青年科学基金获得者。研究方向:绿色化学导向的有机合成方法学,新型高效催化剂的合成与应用。

    ** Corresponding authors e-mail: (Yanwei Ren); (Huanfeng Jiang)
  • 基金资助:
    国家重点研发计划项目(2016YFA0602900); 广东省重点领域研发项目(2020B01088001)

Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction

Xiao Feng1, Yanwei Ren1,**(), Huanfeng Jiang1,**()   

  1. 1. School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
  • Revised:2020-06-10 Online:2020-11-24 Published:2020-09-01
  • Contact: Yanwei Ren, Huanfeng Jiang

CO2的过度排放导致全球环境问题日益严重,如何将CO2有效地利用起来成为全世界的研究热点。相比于高耗能的CO2捕获和储存(CCS)技术,通过催化反应将CO2转化为有价值的能源燃料是同时解决能源危机和环境问题的有效途径。其中,使用太阳能作为能量来源的光催化CO2还原技术更具应用前景。但是目前CO2光还原催化剂仍然存在很多缺点,如可见光响应能力低、光生电子空穴对复合严重、CO2吸附量小、产物的选择性低以及在含水环境中的产氢竞争反应等。金属-有机框架(MOFs)是由金属离子/簇和有机配体构成的一类独特的多孔晶态材料,具有可调的多孔结构、电子迁移速度快、CO2吸附量大等优点,在光催化CO2还原领域具有广阔的应用潜力。现有方法主要是通过对MOFs的功能化修饰、与其他功能型材料复合等获得高效的光还原CO2的催化性能。本文主要对近年来MOFs基CO2光还原催化剂(单一MOFs、MOFs基复合材料以及MOFs衍生材料)的研究现状进行了分析和讨论,并对MOFs材料在光催化CO2还原中的发展趋势进行了展望。

The effective use of CO2 has become a research hotspot worldwide, whose excessive emission led to increasingly serious global environmental problems. Compared with high energy-consuming CO2 capture and storage(CCS) technology, the photocatalytic conversion of CO2 into a valuable energy fuel is an effective way to solve energy and environmental problems. Among them, the development of a photocatalyst with efficient catalytic performance under visible light is the key to this process. Currently, there are still many shortcomings in photoreduction CO2 catalysts, such as weak visible light response ability, high recombination rate of photo-generated electron-hole pairs, low CO2 adsorption capacity, poor product selectivity, and hydrogen-evolution competition in an aqueous environment. Metal-organic frameworks(MOFs), with adjustable porous structures, fast electron migration rate, large CO2 adsorption capacity, etc., are a unique class of porous crystalline materials composed of metal ions/clusters and organic ligands, which have broad application potential in CO2 photocatalytic reduction. The existing methods improving the catalytic performance of MOFs-based catalysts is mainly to enhance the absorption of visible light by functional modification, formation of composites with other functional materials and so on. This review mainly analyzes and discusses the recent advances of MOFs-based photoreduction CO2 catalysts(single MOFs, MOFs-based composites and MOFs-derived materials), and predicts future development trends and prospects of MOFs-based materials in photocatalytic reduction of CO2.

Contents

1 Introduction

2 Single MOFs

2.1 Organic ligands as photosensitizer

2.2 Metalloligands as photosensitizer

3 MOFs-based composites

3.1 MOFs/semiconductor composites

3.2 MOFs/perovskite quantum dot composites

3.3 MOFs/noble metal nanoparticle composites

3.4 MOFs/enzyme composites

4 MOFs-derived materials

5 Conclusion and outlook

()
图1 可见光下NH2-UiO-66(Zr)催化还原CO2的机理[30]
Fig.1 Proposed mechanism for photocatalytic CO2 reduction over NH2-UiO-66(Zr) under visible-light irradiation[30]
图2 氨基功能化Fe-MOFs的双重激发路径[31]
Fig.2 Dual excitation pathways over amino-functionalized Fe-based MOFs[31]
图3 可见光下Co-MOF光还原CO2的机理[32]
Fig.3 Photocatalytic mechanisms of CO2 reduction for Co-MOF[32]
图4 可见光照射下Zr-SDCA-NH2光还原CO2的示意图[28]
Fig.4 Schematic illustration of photocatalytic CO2 reduction over Zr-SDCA-NH2 under visible light irradiation[28]
图5 NNU-28上可见光催化CO2还原的两种途径[35]
Fig.5 A scheme of dual photocatalytic routes for CO2 reduction under visible light over NNU-28[35]
图6 可见光照射下PCN-222光还原CO2的催化机理[39]
Fig.6 Proposed mechanism for photocatalytic CO2 reduction over PCN-222 under visible-light irradiation[39]
图7 Rh-PMOF-1双活性中心的光催化机理[41]
Fig.7 The proposed photo-catalytic mechanism of dual catalytic centers in Rh-PMOF-1[41]
图8 可见光下PCN-138光还原CO2机理[42]
Fig.8 The mechanism for photocatalytic CO2 reduction over PCN-138 under visible-light irradiation[42]
图9 AUBM-4光催化还原CO2机理[53]
Fig.9 The mechanism for CO2 photoreduction over AUBM-4 under visible light irradiation[53]
图10 UiO-67-Mn(bpy)(CO)3Br光还原CO2的机理图[54]
Fig.10 The mechanism for the photocatalytic reaction of CO2 with UiO-67-Mn(bpy)(CO)3Br[54]
图11 可见光下mPT-Cu/Re光还原CO2的催化循环[55]
Fig.11 Proposed catalytic cycle for the visible light-driven CO2 reduction reaction catalyzed by mPT-Cu/Re[55]
图12 可见光下Cd0.2Zn0.8S@UiO-66-NH2光还原CO2的催化机理[61]
Fig.12 The mechanism of photocatalytic CO2 reduction with Cd0.2Zn0.8S@UiO-66-NH2 under visible light irradiation[61]
图13 NUZ/HGN复合催化剂的电荷迁移路径[64]
Fig.13 The charge migration path in NUZ/HGN composites[64]
图14 PCN-224(Cu)/TiO2的Z型光催化机理[65]
Fig.14 The Z-scheme photocatalytic mechanism over PCN-224(Cu)/TiO2[65]
图15 CsPbBr3@ZIFs光还原CO2的示意图[69]
Fig.15 Schematic illustration of CO2 photoreduction process of CsPbBr3/ZIFs[69]
图16 CsPbBr3 QDs/UiO-66(NH2)光还原CO2的机理[70]
Fig.16 Schematic illustration of possible mechanism of photocatalytic CO2 reduction over CsPbBr3 QDs/UiO-66(NH2)[70]
图17 Ag?Re3-MOF光催化CO2还原反应[74]
Fig.17 Photocatalytic conversion of CO2 over Ag?Re3-MOF[74]
图18 MIL-101(Cr)-Ag复合材料中电子的迁移过程[75]
Fig.18 Schematic illustration of the electron transfer process in MIL-101(Cr)-Ag Hybrids[75]
图19 Pt和NH2-UiO-68表面的电子迁移过程[76]
Fig.19 Schematic illustration showing the electron transfer process at the Pt and NH2-UiO-68 interface[76]
图20 FDH@Rh-NU-1006催化循环示意图[79]
Fig.20 The schematic diagram of the primary catalytic cycle over FDH@Rh-NU-100[79]
图21 In2S3-CuInS2光催化还原CO2的机理图[83]
Fig.21 Mechanism illustration for the In2S3-CuInS2 heterojunction for CO2 reduction[83]
图22 ZnO/NiO中电子空穴的迁移过程[84]
Fig.22 The electron-hole migration path in ZnO/NiO[84]
图23 Ni@GC光还原CO2的推测机理[85]
Fig.23 Possible photosensitized CO2 reduction process on the Ni@GC Catalyst[85]
[1]
Zhang N, Long R, Gao C , Xiong Y. Sci. China Mater., 2018,61:771.
[2]
Yu S, Wilson A J, Kumari G, Zhang X , Jain P K. ACS Energy Lett., 2017,2:2058.
[3]
Kondratenko E V, Mul G, Baltrusaitis J, Larrazabal G O, Perez-Ramirez J. Energy Environ . Sci., 2013,6, 3112.
[4]
Li K, Peng B, Peng T. ACS Catal ., 2016,6:7485.
[5]
Xie S J, Zhang Q H, Liu G D, Wang Y. . Chem. Commun., 2016,52:35.
[6]
Lei Z, Xue Y, Chen W, Qiu W, Zhang Y, Horike S , Tang L. Adv. Energy Mater., 2018,8, 1801587.
[7]
Elgrishi N, Chambers M B, Wang X , Fontecave M. Chem. Soc. Rev., 2017,46:761.
[8]
Ouyang T, Huang H H, Wang J W, Zhong D C , Lu T B. Angew. Chem. Int. Ed., 2017,56:738.
[9]
Kuramochi Y, Fujisawa Y, Satake A . Am. Chem. Soc., 2020,142:705.
[10]
Liu X, Inagaki S J , Gong J L. Angew. Chem. Int. Ed., 2016,55:14924.
[11]
Zhang S, Li M, Qiu W, Han J, Wang H, Liu X. Appl. Catal . B -Environ., 2019,259:118113.
[12]
Xu S Z , Carter E A. Chem. Rev., 2019,119:6631.
[13]
Luo Y, Dong L, Liu J, Li S , Lan Y Q. Coordin. Chem. Rev., 2019,390:86.
[14]
Li X, Wen J, Low J, Fang Y , Yu J. Sci. China Mater., 2014,57:70.
[15]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J . CrystEngComm, 2014,16:4919.
[16]
Tu W, Zhou Y, Zou Z. Adv. Mater ., 2014,26:4607.
[17]
Zhou H C , Kitagawa S. Chem. Soc. Rev., 2014,43:5415.
[18]
Jiao L , Seow J Y R, Skinner W S, Wang Z U, Jiang H L. Mater. Today, 2019,27:43.
[19]
Li B, Wen H M, Cui Y, Zhou W, Qian G, Chen B. Adv. Mater ., 2016,28:8819.
[20]
李嘉伟 ( Li J W), 任颜卫(Ren Y W), 江焕峰(Jiang H F). 化学进展( Progress in Chemistry), 2019,31(10):1350.
[21]
肖娟定 ( Xiao J D), 李丹丹,(Li D D), 江海龙(Jiang H L). 中国科学: 化学( Science China: Chemistry), 2018,48:1058.
[22]
Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Adv. Mater ., 2018,30:1707634.
[23]
姜信欣 ( Jiang X X), 赵成军(Zhao C J), 钟春菊(Zhong C J), 李建平(Li J P). 化学进展( Progress in Chemistry), 2017,29(10):1206.
[24]
Liang Y, Shang R, Lu J, An W, Hu J, Liu L, Cui W. Int. J . Hydrogen Energy, 2019,44:2797.
[25]
Ding R, Zheng W, Yang K, Dai Y, Ruan X H, Yan X M , He G H. Sep. Purif. Technol., 2020,236:116209.
[26]
Wang X, Liu J, Zhang L, Dong L, Li S, Kan Y, Li D , Lan Y Q. ACS Catal., 2019,9:1726.
[27]
Lan Y, Dong L, Zhang L, Huang Q, Lu M, Ji W, Liu J. Angew. Chem ., 2020,132:2681.
[28]
Sun M, Yan S, Sun Y, Yang X, Guo Z, Du J, Chen D, Chen P , Xing H Z. Dalton Trans., 2018,47:9.
[29]
Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X , Li Z H. Angew. Chem. Int. Ed., 2012,51:3364
[30]
Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X , Li Z H. Chem. Eur. J., 2013,19:14279.
[31]
Wang D, Huang R, Liu W, Sun D, Li Z. ACS Catal ., 2014,4(12):4254.
[32]
Liao W, Zhang J, Wang Z, Lu Y, Yin S, Wang H, Fan Y, Pan M , Su C Y. Inorg. Chem., 2018,57:11436.
[33]
Pu S, Sun L , Du H B. Inorg. Chem. Commun., 2015,52:50.
[34]
Gutierrez M, Cohen B, Sanchez F , Douhal A. Phys. Chem. Chem. Phys., 2016,18:27761.
[35]
Chen D, Xing H, Wang C, Su Z M . J. Mater. Chem. A, 2016,4:2657.
[36]
Gao W, Chrzanowski M , Ma S Q. Chem. Soc. Rev., 2014,43:5841.
[37]
Feng D, Gu Z, Li J, Jiang H, Wei Z , Zhou H C. Angew. Chem. Int. Ed., 2012,51:10307.
[38]
Sadeghi N, Sharifnia S, Sheikh Arabi M . J. CO2 Util., 2016,16:450.
[39]
Xu H, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu S, Jiang H L . Am. Chem. Soc., 2015,137:13440.
[40]
Chen E X, Qiu M, Zhang Y F, Zhu Y S, Liu L Y, Sun Y Y, Bu X H, Zhang J , Lin Q P. Adv. Mater., 2018,30:1704388.
[41]
Liu J, Fan Y Z, Li X, Wei Z, Xu Y W, Zhang L, Su C Y.Appl. Catal . B Environ., 2018,231:173.
[42]
Qiu Y C, Yuan S, Li X X, Du D Y, Wang C, Qin J S, Drake H F, Lan Y Q, Jiang L, Zhou H C . Am. Chem. Soc., 2019,141:13841.
[43]
Morimoto T, Nakajima T, Sawa S, Nakanishi R, Imori D, Ishitani O . Am. Chem. Soc., 2013,135:16825.
[44]
Kobayashi K, Kikuchi T, Kitagawa S , Tanaka K. Angew. Chem. Int. Ed., 2014,53:11813.
[45]
Genoni A, Chirdon D N, Boniolo M, Sartorel A, Bernhard S, Bonchio M. ACS Catal ., 2017,7:154.
[46]
Castillo C E, Armstrong J, Laurila E, Oresmaa L, Haukka M, Chauvin J, Chardon-Noblat S, Deronzier A . ChemCatChem, 2016,8:2667.
[47]
Bonin J, Robert M, Routier M . Am. Chem. Soc., 2014,136:16768.
[48]
Chan S L F, Lam T L, Yang C, Yan S C, Cheng N M . Chem. Commun., 2015,51:7799.
[49]
Wang J, Liu W, Zhong D , Lu T B. Coordin. Chem. Rev., 2019,378:237.
[50]
Guo Z, Yu F, Yang Y, Leung C, Ng S, Ko C, Cometto C, Lau T C, Robert M . ChemSusChem, 2017,10:4009.
[51]
Bourrez M, Orio M, Molton F, Vezin H, Duboc C, Deronzier A , Chardon-Noblat S. Angew. Chem. Int. Ed., 2014,53:240.
[52]
Woo S J, Choi S H, Kim S Y, Kim P S, Jo J H, Kim C H, Son H J, Pac C , Kang S O. ACS Catal., 2019,9:2580.
[53]
Elcheikh M M, Audi H, Assoud A, Ghaddar T H, Hmadeh M . Am. Chem. Soc., 2019,141:7115.
[54]
Fei H, Sampson M, Lee Y, Kubiak C P , Cohen S M. Inorg. Chem., 2015,54:6821.
[55]
Feng X, Pi Y, Song Y, Brzezinski C, Xu Z, Li Z, Lin W B . Am. Chem. Soc., 2020,142:690.
[56]
Fujishima A, Honda K . Nature, 1972,238:37.
[57]
Abdellah M , El-Zohry A M, Antila LJ, Windle C D, Reisner E, Hammarström L.[J]. Am. Chem. Soc., 2017,139:1226.
[58]
Pan Y, Sun Z, Cong H, Men Y, Xin S, Song J , Yu S H. Nano Res., 2016,9:1689.
[59]
Di Credico B, Redaelli M, Bellardita M, Calamante M, Cepek C, Cobani E , D’Arienzo M, Evangelisti C, Marelli M, Moret M, Palmisano L, Scotti R. Catalysts, 2018,8:353.
[60]
Huang Z, Dong P, Zhang Y, Nie X, Wang X, Zhang X . J. CO2 Util., 2018,24:369.
[61]
Su Y, Zhang Z, Liu H, Wang Y. Appl. Catal . B Environ., 2017,200:448.
[62]
Xu G, Zhang H, Wei J, Zhang H X, Wu X, Li Y, Li C, Zhang J, Ye J . ACS Nano, 2018,12:5333.
[63]
Tian L, Yang X, Liu Q, Qu F , Tang H. Appl. Surf. Sci., 2018,455:403.
[64]
Wang Y, Guo L, Zeng Y, Guo H, Wan S, Ou M, Zhang S L, Zhong Q. ACS Appl . Mater. Interfaces, 2019,11:30673.
[65]
Wang L, Jin P X, Huang J W, She H D , Wang Q Z. ACS Sustainable Chem. Eng., 2019,7:15660.
[66]
Ren J, Li T, Zhou X, Dong X, Shorokhov A V, Semenov M B, Krebchik V D , Wang Y H. Chem. Eng. J., 2019,358:30.
[67]
Hou J, Cao S, Wu Y, Gao Z, Liang F, Sun Y, Lin Z , Sun L C. Chem. Eur. J., 2017,23:9481.
[68]
You S, Guo S, Zhao X, Sun M, Sun C, Su Z , Wang X L. Dalton Trans., 2019,48:14115.
[69]
Kong Z, Liao J, Dong Y, Xu Y, Chen H, Kuang D , Su C Y. ACS Energy Lett., 2018,3:2656.
[70]
Wan S P, Ou M, Zhong Q , Wang X M. Chem. Eng. J. 2019,358:1287.
[71]
Wu L, Mu Y, Guo X, Zhang W, Zhang Z, Zhang M , Lu T B. Angew. Chem. Int. Ed., 2019,58:9491.
[72]
Yuan X, Wang H, Wu Y, Zeng G, Chen X, Leng L, Wu Z B , Li H. Appl. Organomet. Chem., 2016,30:289
[73]
Gu Z, Chen L, Duan B, Luo Q, Liu J , Duan C Y. Chem. Commun., 2016,52:116.
[74]
Choi K M, Kim D, Rungtaweevoranit B, Trickett C A , Barmanbek J T D, Alshammari A S, Yang P D, Yaghi O M.[J]. Am. Chem. Soc., 2017,139:356.
[75]
Guo F, Yang S Z, Liu Y, Wang P, Huang J , Sun W Y. ACS Catal., 2019,9(9):8464.
[76]
Guo F, Wei Y P, Wang S Q, Zhang X Y, Wang F M, Sun W Y . J. Mater. Chem. A, 2019,7:26490.
[77]
Li Y, Wen L Y, Tan T W , Lv Y Q. Front. Bioeng. Biotechnol., 2019,7:394.
[78]
Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M . ChemSusChem, 2012,5:373.
[79]
Chen Y, Li P, Zhou J, Buru C T , Dorđevi L, Li P, Zhang X, Mustafa Cetin M, Fraser Stoddart J, Stupp S I, Wasielewski M R, Farha O K. [J]. Am. Chem. Soc., 2020,142:1768.
[80]
Khaletskaya K, Pougin A, Medishetty R, RÖsler C, Wiktor C, Strunk J , Fischer R A. Chem. Mater., 2015,27:7248.
[81]
Wang S, Guan B Y, Lu Y , Lou X W D.[J]. Am. Chem. Soc., 2017,139:17305.
[82]
Wang S, Guan B Y , Lou X W D.[J]. Am. Chem. Soc., 2018,140:5037.
[83]
Yang J, Zhu X, Mo Z, Yi J, Yan J, Deng J, Xu Y, She Y, Qian J, Xu H , Li H. Inorg. Chem. Front., 2018,5:3163.
[84]
Chen S, Yu J, Zhang J . J. CO2 Util., 2018,24:548.
[85]
Lin X, Wang S, Tu W, Wang H, Hou Y, Dai W , Xu R. ACS Appl. Energy Mater., 2019,2:7670.
[1] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[2] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[3] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[4] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[5] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[6] 杨萍, 刘敏节, 张昊, 郭雯婷, 吕朝阳, 刘迪. 硝基芳烃与醇还原胺化:催化剂和催化机制[J]. 化学进展, 2020, 32(1): 72-83.
[7] 李娜, 常泽, 陈强, 尹佳成, 卜显和. 动态配位空间的构筑与调控[J]. 化学进展, 2019, 31(1): 10-20.
[8] 刘迪, 刘骞, 王永刚, 朱永法. Bi2SiO5半导体光催化剂[J]. 化学进展, 2018, 30(6): 703-709.
[9] 赵田*, 董茗, 赵熠, 刘跃军*. 纳米金属-有机框架材料的制备及应用[J]. 化学进展, 2017, 29(10): 1252-1259.
[10] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[11] 张霞, 樊静. 碳材料修饰铋系光催化剂及其应用[J]. 化学进展, 2016, 28(4): 438-449.
[12] 张晓东, 杨阳, 李红欣, 邹学军, 王玉新. 非TiO2光催化剂去除气态VOCs[J]. 化学进展, 2016, 28(10): 1550-1559.
[13] 金超, 秦瑶, 杨金虎. 新型非TiO2金半导体光催化剂[J]. 化学进展, 2014, 26(0203): 225-233.
[14] 段芳, 张琴, 魏取福, 施冬健, 陈明清. 铋系半导体光催化剂的光催化性能调控[J]. 化学进展, 2014, 26(01): 30-40.
[15] 杨昌军, 彭天右, 邓克俭, 昝菱. 固相光催化降解废弃塑料[J]. 化学进展, 2011, 23(5): 874-879.