English
新闻公告
More
化学进展 DOI: 10.7536/PC120722 前一篇   后一篇

• 综述与评论 •

金属-有机纳米管

戴昉纳*, 柳云骐, 崔敏, 王宗廷, 冯锡兰   

  1. 中国石油大学(华东) 理学院 重质油国家重点实验室 青岛 266580
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 戴昉纳 E-mail:fndai@upc.edu.cn
  • 基金资助:

    山东省优秀中青年科学家奖励基金项目(No.BS2012CL038)、第51批博士后科学基金面上一等资助(No.2012M510106)和中国石油大学(华东)自主创新科研计划(No.12CX04092A)资助

Metal-Organic Nanotubes

Dai Fangna*, Liu Yunqi, Cui Min, Wang Zongting, Feng Xilan   

  1. College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

金属-有机纳米管(metal-organic nanotubes,MONTs)是由无机金属离子和有机配体通过自组装方法构筑的具有纳米级隧道的框架结构,由于其管状结构独特的内部孔径、多样的拓扑结构及其在诸多领域的多重应用,越来越受到关注,是无机化学和配位化学等领域研究中的一个热点。本文评述了金属-有机纳米管的存在形式和构建策略,包括杯芳烃及环糊精类配体构筑MONTs、常规吡啶氮类配体或芳香羧酸配体构筑MONTs和混合配体策略构筑MONTs,着重介绍了近年来国内外金属-有机纳米管研究领域的最新成果和进展,并指出了金属-有机纳米管领域今后的研究方向。

By self-assembly methods, metal-organic nanotubes constructed from metal ions and bridging organic ligands have afforded a promising approach toward the synthesis of open nanoporous materials. In recent years, the design and synthesis of nanotubular frameworks have attracted intensive attention due to their uniform, fixed internal diameters, impressive topological structures and versatile applications in many areas. This paper give a comprehensive review of the metal-organic nanotubes categories, including the metal-organic nanotubes constructed from calixarene and cyclodextrin ligands, ordinary ligands and mixed ligands, highlights the latest achievements and progress in field of metal-organic nanotubes. The future research directions of the metal-organic nanotubes is pointed out at last. Contents
1 Introduction
2 One dimensional MONTs
2.1 Finite MONTs
2.2 Infinite MONTs
2.3 Interpenetration infinite MONTs
3 The tubular structure in three or two dimensional frameworks
4 Conclusion and outlook

中图分类号: 

()

[1] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787-792
[2] Sun Y P, Fu K F, Lin Y, Huang W J. Acc. Chem. Res., 2002, 35: 1096-1104
[3] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105-1136
[4] Avouris P. Acc. Chem. Res., 2002, 35: 1026-1034
[5] Dai H J. Surf. Sci., 2002, 500: 218-241
[6] Datta S. Superlattices Microstruct., 2000, 28: 253-278
[7] Lieber C M. Mrs Bull., 2003, 28: 486-491
[8] Shenton W, Douglas T, Young M, Stubbs G, Mann S. Adv. Mater., 1999, 11: 253-256
[9] Yang F, Jin C, Subedi S, Lee C L, Wang Q, Jiang Y J, Li J, Di Y, Fu D L. Can. Theatre Rev., 2012, 38: 566-579
[10] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Prog Mater Sci., 2012, 57: 1061-1105
[11] Horne W S, Stout C D, Ghadiri M R. J. Am. Chem. Soc., 2003, 125: 9372-9376
[12] Yang B, Kamiya S, Shimizu Y, Koshizaki N, Shimizu T. Chem. Mater., 2004, 16: 2826-2831
[13] Park C, Lee I H, Lee S, Song Y, Rhue M, Kim C. Proc. Natl. Acad. Sci., 2006, 103: 1199-1203
[14] Omastova M, Micusik M. Chem. Pape., 2012, 66: 392-414
[15] Assfour B, Seifert G. Int. J. Hydrogen Energy, 2009, 34: 8135-8143
[16] Bu F, Xiao S J. Crystengcomm., 2010, 12: 3385-3387
[17] Chattopadhyay T, Kogiso M, Asakawa M, Shimizu T, Aoyagi M. Catal. Comm., 2010, 12: 9-13
[18] Jin J C, Wang Y Y, Liu P, Liu R T, Ren C, Shi Q Z. Cryst. Growth Des., 2010, 10: 2029-2032
[19] Guo Z Y, Li G H, Zhou L, Su S Q, Lei Y Q, Dang S, Zhang H J. Inorg. Chem., 2009, 48: 8069-8071
[20] Huang X C, Luo W, Shen Y F, Lin X J, Li D. Chem. Comm., 2008, 3995-3997
[21] Gu Z Y, Yang C X, Chang N, Yan X P. Acc. Chem. Res., 2012, 45: 734-745
[22] Ren S B, Yang X L, Zhang J, Li Y Z, Zheng Y X, Du H B, You X Z. Crystengcomm, 2009, 11: 246-248
[23] Dai F N, Zhang G, Sun D F. Glob. J. Inorg. Chem., 2010, 1(2): 83-102
[24] Thanasekaran R, Luo T T, Lee C H, Lu K L. J. Mater. Chem., 2011, 21: 13140-13149
[25] Hong M, Zhao Y, Su W, Cao R, Fujita M, Zhou Z, Chan A S C. Angew. Chem. Int. Ed., 2000, 39: 2468-2470
[26] Tominaga M, Fujita M. Bull. Chem. Soc. Jpn., 2007, 80: 1473-1482
[27] Tominaga M, Kato M, Okano T, Sakamoto S, Yamaguchi K, Fujita M. Chem. Lett., 2003, 32: 1012-1013
[28] Yamaguchi T, Tashiro S, Tominaga M, Kawano M, Ozeki T, Fujita M. Chem. Asian J., 2007, 2(4): 468-476
[29] Tashiro S, Tominaga M, Kusukawa T. Angew. Chem. Int. Ed., 2003, 42(28): 3267-3270
[30] Tashiro S, Tominaga M, Kawano M, Ozeki T, Fujita M. J. Am. Chem. Soc., 2004, 126: 10818-10819
[31] Meng W J, Clegg J K, Nitschke J R. Angew. Chem. Int. Ed., 2012, 51: 1881-1884
[32] 张华承(Zhang H C), 郝爱友(Hao A Y), 申健(Shen J). 化学通报(Chemistry), 2008, 4: 256-264
[33] Orr G W, Barbour L J, Atwood J L. Science, 1999, 285: 1049-1052
[34] Park K M, Lee E, Park C S, Lee S S, Inorg. Chem., 2011, 50: 12085-12090
[35] Wei Y H, Sun D F, Yuan D Q, Liu Y J, Zhao Y, Li X Y, Wang S N, Dou J M, Wang X P, Hao A Y, Sun D F. Chem. Sci., 2012, DOI: 10.1039/C2SC20187A
[36] Dong Y B, Jiang Y Y, Li J, Ma J P, Liu F L, Tang B, Huang R Q, Batten S R. J. Am. Chem. Soc., 2007, 129: 4520-4521
[37] Fang C, Liu Q K, Ma J P, Dong Y B. Inorg. Chem., 2012, 51: 3923-3925
[38] Zhang S Y, Yang S Y, Lan J B, Yang S, You J. Chem. Commun., 2008, 6170-6172
[39] Liu W T, Ou Y C, Xie Y L, Lin Z, Tong M L. Eur. J. Inorg. Chem., 2009, 4213-4218
[40] Luo T T, Wu H C, Jao Y C, Huang S M, Tseng T W, Wen Y S, Lee G H, Peng S M, Lu K L. Angew. Chem. Int. Ed., 2009, 48: 9461-9464
[41] Xia J, Shi W, Chen X Y, Wang H S, Cheng P, Liao D Z, Yan S P. Dalton Trans., 2007, 2373-2375
[42] Panda T, Kundu T, Banerjee R. Chem Comm., 2012, 48: 5464-5466
[43] Zhao X L, Sun D, Hu T P, Yuan S, Gu L G, Cong H J, He H Y, Sun D F. Dalton Trans., 2012, 41: 4320-4323
[44] Zhang K L, Hou C T, Song J J. Cryst. Eng. Comm., 2012, 14: 590-600
[45] Ren S B, Yang X L, Zhang J, Li Y Z, Zheng Y X, Du H B. Cryst. Eng. Comm., 2009, 11: 246-248
[46] Zhang C Q, Chen C, Liu S, Zhang N. Inorg. Chem. Comm., 2012, 20: 18-22
[47] Dai F N, He H Y, Sun D F. J. Am. Chem. Soc., 2008, 130: 14064-14065
[48] Dai F N, He H Y, Sun D F. Inorg. Chem., 2009, 48: 4613-4615
[49] Huang K L, Liu X, Chen X, Wang D Q. Cryst. Growth Des., 2009, 9: 1646-1650
[50] 戴昉纳(Dai F N). 山东大学博士论文(Doctoral Dissertation of Shandong University), 2011
[51] Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Chem. Soc. Rev., 2012, 41: 2308-2322
[52] Prasad T K, Suh M P. Chem. Eur. J., 2012, 18: 8673-8680
[53] Wen L, Cheng P, Lin W B. Chem. Sci., 2012, 3: 2288-2292
[54] Cui Y, Lee S J, Lin W. J. Am. Chem. Soc., 2003, 125: 6014-6015
[55] Cao X Y, Zhang J, Cheng J K, Kang Y, Yao Y G. Crystengcomm, 2004, 6: 315-317
[56] Wang X L, Qin C, Wang E B, Li Y G, Su Z M, Xu L, Carlucci L. Angew. Chem. Int. Ed., 2005, 44: 5824-5827
[57] Li B, Zang S Q, Ji C, Du C X, Hou H W, Mak T C W. Dalton Trans., 2011, 40: 788-792
[58] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(101): 1477-1504
[59] Ren T D, Bae Y S, Snurr R Q. Chem. Soc. Rev., 2009, 38 (110): 1237-1247
[60] Walton K S, Millward A R, Dubbeldam D, Frost H, Low J J, Yaghi O M, Snurr R Q. J. Am. Chem. Soc., 2008, 130 (114): 406-407
[61] Su C Y, Goforth A M, Smith M D, Pellechia P J, zur Loye H C. J. Am. Chem. Soc., 2004, 126: 3576-3586
[62] He X, Lu C Z, Yuan D Q. Inorg. Chem., 2006, 45: 5760-5766
[63] Zhao B, Cheng P, Dai Y, Cheng C, Liao D Z, Yan S P, Jiang Z H, Wang G L. Angew. Chem. Int. Ed., 2003, 42: 934-936
[64] Zhao B, Cheng P, Chen X Y, Cheng C, Shi W, Liao D Z, Yan S P, Jiang Z H. J. Am. Chem. Soc., 2004, 126: 3012-3013
[65] Ma S Q, Simmons J M, Yuan D Q, Li J R, Weng W, Liu D J, Zhou H C. Chem. Commun., 2009, 4049-4051
[66] Sun Y Q, Zhang J, Chen Y M, Yang Y. Angew. Chem. Int. Ed., 2005, 44: 5814-5817
[67] Wang W H, Tian H R, Zhou Z C, Feng T L, Cheng J W. Cryst. Growth Des., 2012, 12: 2567-2571
[68] Ehrhart J, Planeix J M, Kyritsakas-Gruber N, Hosseini M. Dalton Trans., 2009, 2552-2557
[69] Liu W, Ye L, Liu X, Yuan L M, Jiang J X, Yan C G. Cryst. Eng. Comm., 2008, 10: 1395-1403
[70] Zeng Q, Li M, Wu D. Crystal Growth & Design., 2008, 8: 869-876
[71] Seung U S, Kang H P, Bo Y K, Young K C. Cryst. Growth Des., 2003, 3: 507-512
[72] Jung O S, Kim Y J, Kim K M, Lee Y A. J. Am. Chem. Soc., 2002, 124: 7906-7907
[73] Huang X C, Luo W, Shen Y F, Lin X J, Li D. Chem. Commun., 2008, 3995-3997
[74] Feng X, Wang J G, Liu B, Wang L Y, Zhao J S, Ng S. Cryst. Growth Des., 2012, 12: 927-938
[75] Zhong D C, Meng M, Deng J H, Luo X Z, Xie Y R. Inorg. Chem. Comm., 2011, 14: 1952-1956
[76] Xu X D, Zhang J, Chen L J, Zhao X L, Wang D X, Yang H B. Chem. Eur. J., 2012, 18: 1659-1667
[77] Seeber G, Cooper G J T, Graham N. Newton, Rosnes M H, Long D L, Kariuki B M, Kogerler P, Cronin L. Chem. Sci., 2010, 1: 62-67
[78] Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q. Chem. Sci., 2012, 3: 2217-2223
[79] Ma L, Peng G, Cai J B, Deng H. Z. Anorg. Chem., 2011, 637: 2278-2281
[80] Zhang K L, Hou C T, Song J J, Deng Y, Li L, Ng S W, Diao G W. Crystengcomm., 2012, 14: 590-600
[81] Assfour B, Seifert G. International Journal of Hydrogen Energy, 2009, 34: 8135-8143

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 王睿, 台国安, 伍增辉, 邵伟, 候闯, 郝金钱. 硼纳米结构的理论和实验研究[J]. 化学进展, 2019, 31(12): 1696-1711.
[4] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[5] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[6] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[7] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[8] 罗杰, 李朝威, 兰竹瑶, 陈名海, 姚亚刚, 赵岳. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展, 2015, 27(9): 1158-1166.
[9] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[10] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[11] 康怡然, 蔡锋, 陈宏源, 陈名海, 张锐, 李清文. 碳纳米管/石墨烯复合结构及其电化学电容行为[J]. 化学进展, 2014, 26(09): 1562-1569.
[12] 李昱达, 王迅昶, 吕仁亮, 汪锋. 非共价法分离光学活性单壁碳纳米管[J]. 化学进展, 2014, 26(08): 1361-1368.
[13] 李健, 官亦标, 傅凯, 苏岳锋, 包丽颖, 吴锋. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(07): 1233-1243.
[14] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[15] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.
阅读次数
全文


摘要

金属-有机纳米管