English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 94-109 DOI: 10.7536/PC180506 前一篇   后一篇

• 综述 •

常压电喷雾离子化的机理及应用

李瑜玲, 赵君博, 郭寅龙**()   

  1. 金属有机国家重点实验室 上海有机质谱中心 中国科学院上海有机化学研究所 上海 200032
  • 收稿日期:2018-05-11 修回日期:2018-09-30 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 郭寅龙
  • 基金资助:
    国家自然科学基金项目(21532005); 国家自然科学基金项目(21472228); 国家自然科学基金项目(21874144); 国家科技支撑计划资助(2016YFC0800704)

The Principles and Applications of Electrospray-Based Ambient Ionization

Yuling Li, Junbo Zhao, Yinlong Guo**()   

  1. State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2018-05-11 Revised:2018-09-30 Online:2019-01-15 Published:2018-12-07
  • Contact: Yinlong Guo
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Foundation of China(21532005); The work was supported by the National Natural Foundation of China(21472228); The work was supported by the National Natural Foundation of China(21874144); The National Key Research and Development Program of China(2016YFC0800704)

作为最有前景的分析仪器之一,质谱技术已在药物、食品、环境、人类健康、国家安全及相关领域展现出广阔的应用前景。不同种类的分析物具有多种特征,这为直接离子化及质谱分析增加了难度。常压敞开式离子源是近年来新兴的一种离子源,这类离子源具有无需复杂的样品前处理、操作方便、快速、非破坏性、灵敏度及特异性好、能实现实时原位、高通量分析等特点。本文综述了基于电喷雾离子化(ESI)原理的各种离子源的电离机理、特征及应用,展望了常压敞开式离子源的发展趋势。

As one of the most promising analytical instruments, mass spectrometry(MS) technology has shown a broad application prospect in medicine, food, environment, human health, national security and other related fields. While the different types of analytes have diverse characteristics and largely add the difficulties of direct ionization and mass spectrometric analysis. Ambient mass spectrometry(AMS) is a kind of newly emerging technology performed under ambient conditions that allows the direct analysis of sample or sample surfaces with little or no sample pretreatment. The development and applications of ambient ionization mass spectrometry(AI-MS) that realized ionization under ambient conditions without sample pretreatment have become a frontier field in mass spectrometry and deserved much attention over the last few years. Ambient ionization has high sensitivity and specificity. It also can rapidly analysis real-time in situ and achieve high-throughput analysis without destructing the sample. As a soft ionization method, ESI offers unique advantages for proteomics by allowing the direct analysis of thermolabile compounds and forming multiply charged ions. The developments and applications of mass spectrometry imaging(MSI) have become a frontier field in mass spectrometry and molecular imaging. Some recent contributions on the development of ambient ionization can be applied to mass spectrometry imaging. This review focuses on the development of ionization mechanism, characteristics and applications of various ion sources, which are based on electrospray ionization (ESI) principle.

()
图1 质谱离子源的发展历程示意图
Fig.1 Schematic diagram of the development of mass spectrometer ion source
表1 电喷雾离子化
Table 1 Electrospray-based ionization
图2 (a) 解吸电喷雾离子化示意图[24]; (b) 时间分辨解吸电喷雾离子化装置图[58]
Fig.2 (a) Schematic diagram of desorption electrospray ionization[24]; (b) Schematic showing the apparatus of time-resolved DESI-MS[58]
图3 空气动力辅助离子化装置示意图[51]
Fig.3 Schematic diagram of air flow assisted ionization[51]
图4 探针电喷雾离子化示意图
Fig.4 Schematic diagram of probe electrospray ionization
图5 大气压中性再电离质谱示意图[52]
Fig.5 Schematic showing the processes and apparatus used for APNR-MS[52]
图6 电喷雾萃取离子化示意图
Fig.6 Schematic of extraction electrospray ionization
图7 溶剂辅助电喷雾离子化示意图[50]
Fig.7 Schematic diagram of solvent-assisted electrospray ionization[50]
图8 二氯甲烷中Ph3 PAuNTf2催化的苯基炔丙基醚环化反应液的 (a) ESI-MS质谱图;(b) SAESI-MS质谱图[50]
Fig.8 (a) ESI-MS spectrum; (b) SAESI-MS spectrum of the reaction solution and Ph3 PAuNTf2 in CH2Cl2[50]
图9 基于介质阻挡放电离子源的毛细管电泳-质谱联用接口示意图[71]
Fig.9 Schematic diagram of the CE-DBDI-MS interface[71]
图10 基于实时直接分析的毛细管电泳-质谱联用接口示意图[72]
Fig.10 Interface for online coupling of CE to ambient MS using DART[72]
图11 纸基电喷雾离子化示意图[41]
Fig.11 Schematic diagram of paper spray ionization[41]
图12 木尖电喷雾离子化示意图[46]
Fig.12 Schematic diagram of wooden-tips eletrospray ionization[46]
图13 树叶电喷雾离子化示意图[77]
Fig.13 Schematic diagram of leaf spray[77]
图14 尖端碳纤维辅助的 ESI 喷雾嘴示意图[80]
Fig.14 Schematic of the electrospray ionization system with inhouse-made carbon fiber emitter[80]
图15 等离子体诱导电喷雾电离示意图[82]
Fig.15 Schematic view of the experimental setup allowing for reactions between radicals formed from a low-temperature helium plasma and peptide ions formed from nanoESI[82]
图16 脉冲直流电喷雾离子化示意图,生成脉冲喷雾分四步:溶液极化、产生正电喷雾、液体-气体表面的电化学反应和气体与电极之间的放电[47]
Fig.16 Model for the ionization behavior of pulsed-dc-ESI(positive mode). The procedure to generate one pulsed spray has four steps: solution polarization, positive electrospray, electrochemical reaction in liquid-gas surface, and discharge between gas and electrode, namely,step 1 to step 4, respectively[47]
图17 静电喷雾离子化示意图[49]
Fig.17 Schematic Representation of the Setups for Electrostatic-Spray Ionization[49]
图18 (a) 零电压纸喷雾离子化示意图[86]; (b) [Cr(H2O)4Cl2]+质谱检测图[87]
Fig.18 (a) Schematic of ZV-PSI[86]; (b) Spectrum of [Cr(H2O)4Cl2]+[87]
图19 快速喷发解吸离子化示意图[53]
Fig.19 Schematic of fast eruption desorption ionization[53]
图20 (a) 零电压碳纤维离子化示意图;(b) 敌草快质谱图
Fig.20 (a) Schematic of ZV-CFI; (b) Spectrum of diquat
图21 (a)零电压低温检测药物托拉塞米质谱图; (b)零电压碳纤维离子化装置图
Fig.21 (a) Spectrum of Torsememi; (b) Device schematic of ZV-CFI
图22 ESTASI-MSI的(a) 3D和(b) 侧视示意图[94]
Fig.22 (a) 3D and (b) side view schematic representation of the setup used for ESTASI-MSI[94]
[1]
王昊阳 ( Wang H Y), 郭寅龙(Guo Y L), 张立(Zhang L), 安登魁(An D K . 有机化学( Chinese Journal of Organic Chemistry), 2002,22:974.
[2]
J A C . Nature, 1922,109:671.
[3]
Smith R D, Loo J A, Edmonds C G, Barinaga C J, Udseth H R . Anal. Chem., 1990,62:882.
[4]
Richardson S D . Anal. Chem., 2010,84:4742.
[5]
Franchetti V S, Solka B H, Baitinger W E, Amy J W, Cooks R G . Int. J. Mass Spectrom. Ion. Phys., 1977,23:29.
[6]
Domon B, Aebersold R . Science, 2006,312:212.
[7]
Burlnsky D J, Cooks R G, Chess E K, Gross M L . Anal. Chem., 1982,54:645.
[8]
Caprioli R M, Farmer T B, Gile J . Anal. Chem., 1997,69:4751.
[9]
Bell R J, Short R T, van Amerom F H W, Byrne R H . Environ. Sci. Technol., 2007,41:8123.
[10]
Wiseman J M, Ifa D R, Venter A, Cooks R G . Nat. Protoc., 2008,3(3):517.
[11]
Sinz A . Mass Spectrom Rev., 2006,25:663.
[12]
Ojanpera I, Kolmonen M, Pelander A . Anal. Bioanal. Chem., 2012,403:1203.
[13]
McPhail D S . J. Mater. Sci., 2006,41:873.
[14]
Koppenaal D W, Eiden G C, Barinaga C J . J. Anal. At. Spectrom., 2004,19:561.
[15]
Cuyckens F, Claeys M . J. Mass Spectrom., 2004,39(1):1.
[16]
Combariza M Y, Fahey A M, Milshteyn A, Vachet R W . Int. J. Mass Spectrom., 2005,244(2/3):109.
[17]
Badu-Tawiah A K, Li A, Jjunju F P, Cooks R G . Angew. Chem. Int. Ed., 2012,51(37):9417.
[18]
Budzikiewicz H, Grigsby R D . Mass Spectrom Rev., 2006,25(1):146.
[19]
Pitt J J . Clin. Biochem. Rev., 2009,30:19.
[20]
Fortner E C, Zhao J, Zhang R Y . Anal. Chem., 2004,76:5436.
[21]
Yamashitat M, Fenn J B . J. Phys. Chem., 1984,88:4611.
[22]
Trimpin S . J. Am. Soc. Mass Spectrom., 2016,27:4.
[23]
Chait B T, Beavis R C . Anal. Chem., 63, 1991,63(24):1193.
[24]
Takats Z, Wiseman J M, Gologan B, Cooks R G . Science, 2004,306(5695):471.
[25]
Michael S M, Chien B M, Lubman D M . Anal. Chem., 1993,65:2614.
[26]
Li K Y, Tu H H, Ray A K . Langmuir, 2005,21:3786.
[27]
Kebarle P, Verkerk U H . Mass Spectrom Rev., 2009,28(6):898.
[28]
Fenn J B, Nguyen S . Proc. Natl. Acad. Sci. U. S.A., 2007,104:1111.
[29]
Iribarne J V, Thomson B A . J. Chem. Phys., 1976,64(6):2287.
[30]
高方园 ( Gao F Y), 张维冰 (Zhang W B), 关亚风 (Guan Y F), 张玉奎 (Zhang Y K) . 中国科学( Scientia Sinica Chimica), 2014,44(7):1181.
[31]
Fung Y M E, Adams C M, Zubarev R A . J. Am. Chem. Soc., 2009,131:9977.
[32]
Zubarev R A, Kelleher N L, McLafferty F W . J. Am. Chem. Soc., 1998,120:3265.
[33]
Robb D B, Rogalski J C, Kast J, Blades M W . Anal. Chem., 2012,84:4221.
[34]
Schnier P D, Price W D, Jockusch R A, Williams E R . J. Am. Chem. Soc., 1996,118:7178.
[35]
Chen H, Eberlin L S, Cooks R G . J. Am. Chem. Soc., 2007,129:5880.
[36]
Ashworth D J, Baird W M, Chang C, Ciupek J D, Busch K L, Cooks R G . Biomed. Mass Spectrom., 1985,12(7):309.
[37]
Little D P, Speir J P, Senko M W, O’Connor P B, McLafferty F W . Anal. Chem., 1994,66:2809.
[38]
Nemes P, Vertes A . Anal. Chem., 2007,79:8098.
[39]
Chen H, Cotte-Rodriguez I, Cooks R G . Chem. Commun., 2006 ( 6):597.
[40]
王昊阳 ( Wang H Y), 刘小攀 (Liu X P), 郭寅龙 (Guo Y L) . 中国科学( Scientia Sinica Chimica), 2017,47(12):1424.
[41]
Liu J J, Wang H, Manicke N E, Lin J M, Cooks R G, Ou Y Z . Anal. Chem., 2010,82:2463.
[42]
Chen H, Venter A, Cooks R G . Chem. Commun., 2006 ( 19):2042.
[43]
Law W S, Wang R, Hu B, Berchtold C, Meier L, Chen H W, Zenobi R . Anal. Chem, 2010,82:4494.
[44]
Yu Z, Chen L C, Mandal M K, Yoshimura K, Takeda S, Hiraoka K . J. Am. Soc. Mass Spectrom., 2013,24(10):1612.
[45]
Chen F M, Lin L Y, Zhang J, He Z Y, Uchiyama K, Lin J M . Anal. Chem., 2016,88:4354.
[46]
Hu B, So P K, Chen H W, Yao Z P . Anal. Chem., 2011,83:8201.
[47]
Wei Z W, Xiong X C, Guo C A, Si X Y, Zhao Y Y, He M Y, Yang C D, Xu W, Tang F, Fang X, Zhang S C, Zhang X R . Anal. Chem., 2015,87:11242.
[48]
Chen Z Y, A . Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 2008,77(036316):1.
[49]
Qiao L, Sartor R, Gasilova N, Lu Y, Tobolkina E, Liu B H, Girault H H . Anal. Chem., 2012,84:7422.
[50]
Zhang J T, Wang H Y, Zhu W, Cai T T, Guo Y L . Anal. Chem., 2014,86:8937.
[51]
He J M, Tang F, Luo Z G, Chen Y, Xu J, Zhang R P, Wang X H, Abliz Z . Rapid Commun. Mass Spectrom., 2011,25(7):843.
[52]
Liu P Y, Zhao P Y, Cooks R G, Chen H . Chem.Sci, 2017,8(9):6499.
[53]
Liu X P, Wang H Y, Dong G Q, Li Z Q, Guo Y L . J. Am. Soc. Mass Spectrom., 2018,29(6):1319.
[54]
Wu M X, Wang H Y, Zhang J T, Guo Y L . Anal. Chem., 2016,88:9547.
[55]
Ho C S, Lam C W K, Chan M H M, Cheung R C K, Law L K, Lit L C W, Ng K F, Suen M W M, Tai H L . Clin. Biochem. Rev., 2003 ( 24):3.
[56]
Takats Z, Wiseman J M, Cooks R G . J. Mass Spectrom., 2005,40(10):1261.
[57]
Huang M Z, Cheng S C, Cho Y T, Shiea J . Anal. Chim. Acta., 2011,702(1):1.
[58]
Cheng S, Wu Q H, Xiao H, Chen H . Anal.Chem, 2017,89:2338.
[59]
Brown T A, Chen H, Zare R N . Angew. Chem. Int.Ed., 2015,54(38):11183.
[60]
Schwarz H, Terlouw J K . Angew. Chem. Int.Ed., 1987,26:805.
[61]
McLafferty F W . Science, 1990,247:925.
[62]
Schwarz H, Goldberg N . Acc. Chem. Res., 1994,27:347.
[63]
McLafferty F W, Wesdemiotis C . Chem. Rev., 1987,87:485.
[64]
Wesdemiotis C, Cordero M M . Anal. Chem., 1994,66:861.
[65]
Cordero M M, Houser J J, Wesdemiotis C . Anal. Chem. 1993,65:1594.
[66]
McLafferty F W, Todd P J, McGilvery D C, Baldwin M A . J. Am. Chem. Soc., 1980,102:3360.
[67]
Li Y F, Zhang N, Zhou Y M, Wang J N, Zhang Y M, Wang J Y, Xiong C Q, Chen S M, Nie Z X . J. Am. Soc. Mass Spectrom., 2013,24(9):1446.
[68]
Lindenburg P W, Haselberg R, Rozing G, Ramautar R . Chromatographia, 2014,78(5/6):367.
[69]
Kleparnik K . Electrophoresis, 2013,34(1):70.
[70]
Heemskerk A A, Deelder A M, Mayboroda O A . Mass Spectrom.Rev., 2016,35(2):259.
[71]
Zhang Y D, Ai W P, Bai Y, Zhou Y L, Wen L H, Zhang X X, Liu H W . Anal. Bioanal. Chem., 2016,408(30):8655.
[72]
Chang C C, Xu G G, Bai Y, Zhang C S, Li X J, Li M, Liu Y, Liu H W . Anal. Chem., 2013,85:170.
[73]
张佳玲 ( Zhang J L), 霍飞凤 (Huo F F), 周志贵 (Zhou Z G), 白玉 (Bai Y), 刘虎威 (Liu H W) , 化学进展( Progress in Chemistry), 2012,24(1):101
[74]
Gross J H . Anal. Bioanal. Chem., 2014,406(1):63.
[75]
Zhang Y D, Li X J, Nie H G, Yang L, Li Z, Bai Y, Niu L, Song D Q, Liu H W . Anal. Chem., 2015,87:6505.
[76]
Li Z, Zhang J L, Zhang Y W, Bai Y, Liu H W . J. Anal. Test., 2017,1(1):2.
[77]
Liu J J, Wang H, Cooks R G, Ou Y Z . Anal. Chem., 2011,83:7608.
[78]
Hu B, So P K, Yang Y Y, Deng J W, Choi Y C, Luan T G, Yao Z P . Anal. Chem., 2018,90:1759.
[79]
Deng J W, Yu T T, Yao Y, Peng Q, Luo L J, Chen B W, Wang X W, Yang Y Y, Luan T G . Anal. Chim. Acta, 2017,954:52.
[80]
Liu J, Ro K W, Busman M, Knapp D R, . Anal. Chim, 2004,76:3599.
[81]
Nyadong L, Galhena A S, Ferna’ndez F M . Anal. Chem., 2009,81:7788.
[82]
Xia Y, Cooks R G . Anal. Chem., 2010,82:2856.
[83]
Schmidt A, Bahr U, Karas M . Anal. Chem., 2001,73:6040.
[84]
Wilm M, Mann M . Anal. Chem., 1996,68:1.
[85]
Fu X, Liang H X, Xia B, Huang C Y, Ji B C, Zhou Y . J. Agric. Food. Chem., 2017,65(37):8256.
[86]
Wleklinski M, Li Y, Bag S, Sarkar D, Narayanan R, Pradeep T, Cooks R G . Anal. Chem., 2015,87:6786.
[87]
Narayanan R, Pradeep T . Anal. Chem., 2017,89:10696.
[88]
刘虎威 ( Liu H W), 冯鲍盛 (Feng B S), 白玉 (Bai Y) . 大学化学( University Chemistry), 2013,28(4):1.
[89]
Chen L C, Yoshimural K, Yu Z, Zwata R, Ito H, Suzuki H, Mori K, Ariyada O, Takeda S, Kubota T, Hiroka K . J. Mass.Spectrom., 2009,44:1469.
[90]
Campbell D Z, Ferrira C R, Eberlin L S, Cooks R G . Anal. Bioanal. Chem., 2012,404:389.
[91]
Luo Z G, He J M, Chen Y, He J J, Gong T, Tang F, Wang X H, Zhang R P, Huang L, Zhang L F, Lv H N, Ma S G, Fu Z D, Chen X G, Yu S S, Abliz Z . Anal.Chem, 2013,85:2977.
[92]
罗志刚 ( Luo Z G), 贺玖明 (He J M), 刘月英 (Liu Y Y), 李铁钢 (Li T G), 何菁菁 (He J J), 张四纯 (Zhang S C), 张新荣 (Zhang X R), 再帕尔·阿不力孜 (Abliz Z) . 中国科学( Scientia Sinica Chimica), 2014,44(5):795.
[93]
van Geenen F A, Franssen M C, Schotman A H, Zuilhof H, Nielen M W . Anal. Chem., 2017,89:4031.
[94]
Qiao L, Tobolkina E, Lesch A, Bondarenko A, Zhong X, Liu B, Pick H, Vogel H, Girault H H . Anal. Chem., 2014,86:2033.
[1] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[2] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[3] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[4] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[5] 任娟, 边申, 王奕允, 孔祥蕾. 幻数团簇丝氨酸八聚体:结构和手性特征[J]. 化学进展, 2018, 30(4): 383-397.
[6] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[7] 刘婧靖, 何晓伟, 何燕, 喻目千, 蒋乐, 陈波. 纸喷雾敞开式质谱法的发展和应用[J]. 化学进展, 2017, 29(6): 659-666.
[8] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[9] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[10] 徐冲, 范艳璇, 范琳媛, 曹洁*, 胡长文*. 质谱在多金属氧簇化学中的应用[J]. 化学进展, 2013, 25(05): 809-820.
[11] 储根柏, 陈军, 刘付轶*, 盛六四* . 气相自由基反应动力学的光电离质谱研究[J]. 化学进展, 2012, 24(11): 2097-2105.
[12] 彭晓敏, 张金超, 高愈希, 柴之芳. 金属蛋白的提取分离技术[J]. 化学进展, 2012, 24(05): 834-843.
[13] 张佳玲, 霍飞凤, 周志贵, 白玉, 刘虎威. 实时直接分析质谱的原理及应用[J]. 化学进展, 2012, 24(01): 101-109.
[14] 石磊, 刘淑莹, Zubarev Roman. 电子捕获解离技术在生物质谱中的作用[J]. 化学进展, 2011, 23(8): 1710-1718.
[15] 王胜, 邹霞, 张延. 基于质谱的蛋白质O-糖基化分析研究进展[J]. 化学进展, 2010, 22(12): 2428-2435.
阅读次数
全文


摘要

常压电喷雾离子化的机理及应用