English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 110-120 DOI: 10.7536/PC180535 前一篇   后一篇

• 综述 •

有机硅合成新方法

王灯旭1,2,**(), 曹金风2, 韩栋栋2, 李文思2, 冯圣玉1,2,**()   

  1. 1. 山东大学国家胶体材料工程技术研究中心 济南 250100
    2. 山东大学化学与化工学院 特种功能聚集体材料教育部重点实验室 济南 250100
  • 收稿日期:2018-05-27 修回日期:2018-07-02 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 王灯旭, 冯圣玉
  • 基金资助:
    国家自然科学基金项目(21502105); 国家自然科学基金项目(21774070); 山东省自主创新基金项目资助(2017CXGC1112)

Novel Organosilicon Synthetic Methodologies

Dengxu Wang1,2,**(), Jinfeng Cao2, Dongdong Han2, Wensi Li2, Shengyu Feng1,2,**()   

  1. 1. National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
    2. Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received:2018-05-27 Revised:2018-07-02 Online:2019-01-15 Published:2018-12-07
  • Contact: Dengxu Wang, Shengyu Feng
  • About author:
    ** Corresponding author e-mail: (Dengxu Wang);
    (Shengyu Feng)
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21502105); The work was supported by the National Natural Science Foundation of China(21774070); The Fund for Shandong Province Major Scientific and Technological Innovation Projects(2017CXGC1112)

有机硅材料作为一类具有独特优异性能的新材料,已成为化学和材料领域的重点研究方向之一。本文综述了近年来国内外有机硅合成的新方法,主要包括炔基-叠氮环加成反应、巯基-双键反应和胺-烯迈克尔加成反应等,重点介绍各种合成方法的优势及在制备新型功能化的有机硅化合物、有机硅聚合物及有机硅弹性体等中的应用,并对未来有机硅合成方法的发展方向进行了展望。

Organosilicon materials as a novel class of functional materials with unique properties have become one of the most important research fields in chemistry and material sciences. The present review summarizes novel synthetic methodologies, including alkynyl-azide cycloaddition reaction, thiol-ene reaction and amine-ene Michael addition reaction, for organosilicon synthesis. In particular, the advantages of these strategies and their applications in novel functional organosilicon compounds, organosilicon polymers and organosilicon elastomers are introduced. Finally, the trend and future prospects of novel synthetic strategies for organosilicon synthesis will be presented.

()
图式1 通过CuAAC反应制备硅烷偶联剂,其中L为连接单元,function为功能性单元[10,11,12]
Scheme 1 Synthetic routes of silane coupling agents by CuAAC reactions. L is the linker and Functions is functional unit[10,11,12]
图式2 通过CuAAC反应制备功能化二硅氧烷和聚硅氧烷[15]
Scheme 2 Synthetic routes of functional disiloxanes and polysiloxanes by CuAAC reactions[15]
图式3 通过CuAAC点击化学反应制备有机硅弹性体[18]。(A)2 mm厚× 9 cm有机硅弹性膜;(B)1 cm × 5 mm厚有机硅弹性体
Scheme 3 Synthesis of organosilicon elastomers by CuAAC click reaction[18]. (A) 2 mm thick ×9 cm silicone film; (B) 1 cm × 5 mm thick silicone elastomer. Reproduced from Ref. [18] with permission. Copyright 2009, American Chemical Society
图式4 通过CuAAC反应制备基于聚硅氧烷-聚乙烯砜的复合材料及在碱性条件下的分解示意图[20]
Scheme 4 Synthesis of polysiloxane-poly(olefin sulfone) compositions by CuAAC reaction and their decomposition via unzipping of POS when exposed to base. Reproduced from Ref.[20] with permission. Copyright 2010, American Chemical Society.
图式5 通过CuAAC反应制备有机硅σ-π共轭聚合物[23, 24]
Scheme 5 Synthesis of organosilicon σ-π conjugated polymers via CuAAC reactions[23, 24]
图式6 巯基-双键反应机理:(A)自由基反应机理;(B) Michael加成反应机理
Scheme 6 Mechanism of thiol-ene reactions. (A) Mechanism of free radical reaction; (B) Mechanism of Michael addition reaction
图式7 通过巯基-双键反应制备功能化聚硅氧烷[30]
Scheme 7 Synthesis of functional polysiloxanes via thiol-ene reaction[30]
图式8 通过巯基-双键反应制备有机硅超支化聚合物[34]
Scheme 8 Synthesis of organosilicon hyperbranced polymers via thiol-ene reaction[34]
图式9 通过巯基-双键反应修饰硅橡胶表面[48]
Scheme 9 Modifying the surface of silicone rubbers. Reproduced from Ref. [48] with permission. Copyright 2013, American Chemical Society
图式10 通过胺烯反应制备功能化硅烷。(a)基于(γ-哌嗪基丙基)甲基二甲氧基硅烷;(b)基于3-氨丙基三乙氧基硅烷[51]
Scheme 10 Synthesis of functional silanes via amine-ene reaction derived from [3-(1-piperazinyl)propyl]methyl- dimethoxysilane (a) and 3-aminopropyltriethoxylsilane (b)[51]
图式11 通过胺-烯反应合成温度响应性聚硅氧烷(a)[53]和温度、光双重响应性聚硅氧烷(b)[55]
Scheme 11 Synthesis of temperature responsive polysiloxane (a)[53] and temperature and light dual-responsive polysiloxane (b)[55]
图式12 基于胺-烯反应制备硅橡胶[58]
Scheme 12 Synthesis of silicone rubber via amine-ene reaction[58]
图式13 通过胺-烯反应制备蒽修饰的聚硅氧烷及弹性体的制备[61]
Scheme 13 Synthesis of anthracene-modified polysiloxane by amine-ene reaction and the formation of elastomers[61]
[1]
冯圣玉 ( Feng S), 张洁 (Zhang J), 朱庆增 (Zhu Q), 李美江 (Li M) . 有机硅高分子及其应用 (Organosilicon Polymers and Their Applications). 北京: 化学工业出版社 (Beijing: Chemical Industry Press). 2004.
[2]
Jones RG, Ando W, Chojnowski J . Silicon-Containing Polymers: The Royal Society ofChemistry. 2000.
[3]
Eduok U, Faye O, Szpunar J . Prog. Org. Coat., 2017,111:124.
[4]
Yilgör E, Yilgör I . Prog. Polym. Sci., 2014,39:1165.
[5]
Putzien S, Nuyken O, Kühn F E . Prog. Polym. Sci., 2010,35:687.
[6]
Nakajima Y, Shimada S . RSC Adv, 2015,5:20603.
[7]
Troegel D, Stohrer J . Coord. Chem. Rev., 2011,255:1440.
[8]
Xia Y, Yao H, Miao Z, Wang F, Qi Z, Sun Y . Prog. Chem, 2015,27:532.
[9]
Wang D, Klein J, Mejía E . Chem. Asian J., 2017,12:1180.
[10]
Moitra N, Moreau J J E, Cattoen X, Wong Chi Man M . Chem. Commun., 2010,46:8416.
[11]
Bürglová K, Moitra N, Hodacová J, Cattoën , Wong Chi Man M . J. Org. Chem., 2011,76:7326.
[12]
Bürglová K, Noureddine A, Hodacová J, Toquer G, Cattoën X, Wang Chi Man M . Chem. Eur. J., 2014,20:10371.
[13]
Madsen F B, Dimitrov I, Daugaard A E, Hvilsted S, Skov A L . Polym. Chem., 2013,4:1700.
[14]
Singh G, Mangat S S, Sharma H, Singh J, Arora A, Singh Pannu A P, Singh N . RSC Adv., 2014,4:36834.
[15]
Gonzaga F, Yu G, Brook M A . Chem. Commun., 2009,45:1730.
[16]
Fawcett A S, Brook M A . Macromolecules, 2014,47:1656.
[17]
Rambarran T, Bertrand A, Gonzaga F, Boisson F, Bernard J, Fleury E, Ganachaud F, Brook M A . Chem. Commun., 2016,52:6681.
[18]
Gonzaga F, Yu G, Brook M A . Macromolecules, 2009,42:9220.
[19]
Rambarran T, Gonzaga F, Brook M A . Generic,Macromolecules, 2012,45:2276.
[20]
Lobez J M, Swager T M . Macromolecules, 2010,43:10422.
[21]
Bretzler V, Grübel M, Meister S, Rieger B . Macromol. Chem. Phy., 2014,215:1396.
[22]
Rambarran T, Gonzaga F, Brook M A . J. Polym. Sci. Polym. Chem., 2013,51:855.
[23]
Wang Y, Wang D, Han J, Feng S Y . J. Organomet. Chem., 2011,696:1874.
[24]
Wang Y, Wang D, Xu C, Wang R, Han J, Feng S Y . J. Organomet. Chem., 2011,696:3000.
[25]
Chandran M S, Sunitha K, Gayathri D S, Soumyamol P B, Mathew D . J. Mater. Sci., 2018,53:2497.
[26]
Theodor P . Ber. Deut. Chem. Gesellschaft., 1905,38:646.
[27]
Franc G, Kakkar A K . Chem. Soc. Rev., 2010,39:1536.
[28]
Tucker-Schwartz A K, Farrell R A, Garrell R L . J. Am. Chem. Soc., 2011,133:11026.
[29]
Cao J F, Zuo Y J, Wang D, Zhang J, Feng S Y . New J.Chem., 2017,41:8546.
[30]
Xue L, Wang D, Yang Z, Liang Y, Zhang J, Feng S Y . Eur. Polym. J., 2013,49:1050.
[31]
Cao J F, Zuo Y J, Lu H, Yang Y, Feng S Y . J. Photochem. Photobio. Chem., 2018,350:152.
[32]
Li L, Xue L, Feng S Y, Liu H . Inorg.Chim Acta, 2013,407:269.
[33]
Xue L, Li L, Feng S Y, Liu H . J. Organomet. Chem., 2015,783:49.
[34]
Xue L, Yang Z, Wang D, Wang Y, Zhang J, Feng S Y . J. Organomet. Chem., 2013,732:1.
[35]
Zhang Z, Feng S Y, Zhang J . Macromol. Rapid Commun., 2016,37:318.
[36]
Zuo Y J, Gou Z M, Cao J F, Li X, Feng S Y . RSC Adv., 2016,6:45193.
[37]
Yang H, Liu M X, Yao Y W, Tao P Y, Lin B P, Keller P, Zhang X Q, Sun Y, Guo L X . Macromolecules, 2013,46:3406.
[38]
Xue L, Zhang Y, Zuo Y J, Diao S, Zhang J, Feng S Y . Mater. Lett., 2013,106:425.
[39]
van den Berg O, Nguyen L T T, Teixeira R F A, Goethals F, Özdilek C, Berghmans S, Du Prez F . Macromolecules, 2014,47:1292.
[40]
Nguyen K D Q, Megone W V, Kong D, Gautrot J E . Polym. Chem., 2016,7:5281.
[41]
Zuo Y J, Lu H, Xue L, Wang X, Ning L, Feng S Y . J. Mater. Chem. C., 2014,2:2724.
[42]
Zuo Y J, Lu H F, Xue L, Wang X M, Wu LF, Feng S Y . Chem. Eur. J., 2014,20:12924.
[43]
Zuo Y J, Cao J F, Feng S Y . Adv. Funct. Mater., 2015,25:2754.
[44]
Zuo Y J, Gou Z M, Zhang C, Feng S Y . Macromol. Rapid Commun., 2016,37:1052.
[45]
Zuo Y J, Gou Z M, Zhang J, Feng S Y . Macromol. Rapid Commun., 2016,37:597.
[46]
Ozmen M M, Fu Q, Kim J, Qiao G G . Chem. Commun., 2015,51:17479.
[47]
Gan Y, Jiang X, Yin J . J. Mater. Chem. C, 2014,2:5533.
[48]
Zhang J, Chen Y, Brook M A . Langmuir, 2013,29:12432.
[49]
Magennis E P, Hook AL, Williams P, Alexander M R . ACS Appl. Mater. Inter., 2016,8:30780.
[50]
Michael A . Am. Chem. J., 1887,9:115.
[51]
Feng L, Zhu S, Zhang W, Mei K, Wang H, Feng S Y . ChemistrySelect, 2017,2:3721.
[52]
Genest A, Binauld S, Pouget E, Ganachaud F, Fleury E, Portinha D . Polym.Chem, 2017,8:624.
[53]
Li S, Feng S . RSC Adv, 2016,6:99414.
[54]
Li S, Feng L, Lu H, Feng S . New J Chem., 2017,41:1997.
[55]
Feng K, Li S, Feng L, Feng S . New J Chem., 2017,41:14498.
[56]
Dvornic P R, Hu J, Reeves S D, Owen M J . Silicon Chem., 2002,1:177.
[57]
Lu H, Feng L, Li S, Zhang J, Lu H, Feng S Y . Macromolecules, 2015,48:476.
[58]
Feng L, Zhou L, Feng S . RSC Adv, 2016,6:111648.
[59]
Feng L, Li S, Feng S Y . RSC Adv., 2017,7:13130.
[60]
Cao J F, Feng L, Feng S Y . New J.Chem., 2018,42:1973.
[61]
Han D D Lu H, Li W S, Li Y, Feng S Y . RSC Adv., 2017,7:56489.
[62]
Loayza A, Cabanelas JC, González M, Baselga J . Polymer, 2015,69:178.
[63]
Jothibasu S, Ashok Kumar A, Alagar M . J. Sol-Gel Sci. Tech., 2007,43:337.
[64]
Van Damme J, van den Berg O, Brancart J, Vlaminck L, Huyck C, Van Assche G, van Mele B, Du Prez F . Macromolecules, 2017,50:1930.
[65]
Fawcett A S, Hughes T C, Zepeda-Velazquez L, Brook M A . Macromolecules, 2015,48:6499.
[66]
Jo Y Y, Lee A, Baek K Y, Lee H, Hwang S S . Polymer, 2017,108:58.
[67]
Gou Z M, Zuo Y J, Feng S Y . RSC Adv., 2016,6:73140.
[68]
Zhang J, Chen Y, Sewell P, Brook M A . Green Chem., 2015,17:1811.
[69]
Fawcett A S, Grande J B, Brook M A . J. Polym. Sc. Polym. Chem., 2013,51:644.
[70]
Brook M A, Grande J B, Ganachaud F. Silicon Polymers , Springer-Verlag-Berlin, 2011. 161.
[71]
Grande J B, Fawcett A S, McLaughlin A J, Gonzaga F, Bender T P, Brook M A . Polymer, 2012,53:3135.
[72]
Brook M A . Chem. Eur. J., 2018,24:8458.
[73]
Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N . Adv. Mater., 2016,28:8277.
[74]
Li C H, Wang C, Keplinger C, Zuo J L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z N . Nat. Chem., 2016,8:618.
[75]
Zhao J, Xu R, Luo G, Wu J, Xia H . J. Materi. Chem. B, 2016,4:982.
[1] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[2] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[3] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[4] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[5] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[6] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[7] 徐源鸿, 熊兴泉, 蔡雷, 唐忠科, 叶章基. 巯基-烯点击化学[J]. 化学进展, 2012, 24(0203): 385-394.
[8] 杨正龙, 陈秋云, 周丹, 卜弋龙. 硫醇-烯/炔点击化学合成功能聚合物材料[J]. 化学进展, 2012, 24(0203): 395-404.
[9] 邱素艳, 高森, 林振宇, 陈国南. 点击化学最新进展[J]. 化学进展, 2011, 23(4): 637-648.
[10] 袁伟忠, 张锦春, 魏静仁. 点击化学与活性自由基聚合联用构建特殊结构聚合物[J]. 化学进展, 2011, 23(4): 760-771.
[11] 杨奇志, 刘佳, 蒋序林. 点击化学在生物医用高分子中的应用[J]. 化学进展, 2010, 22(12): 2377-2387.
[12] 何乃普, 何玉凤, 王荣民, 宋鹏飞, 周云. 蛋白质高分子结合体[J]. 化学进展, 2010, 22(12): 2388-2396.
[13] 王成 王妮 周伟 沈玉梅 张岚. “点击化学”在放射性药物合成中的应用*[J]. 化学进展, 2010, 22(08): 1591-1602.
[14] 赵正达 袁伟忠 顾书英 任天斌 任杰. 点击化学及其在生物医学领域的应用*[J]. 化学进展, 2010, 22(0203): 417-426.
[15] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
阅读次数
全文


摘要

有机硅合成新方法