English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1743-1753 DOI: 10.7536/PC150529 前一篇   后一篇

• 综述与评论 •

硫醇保护金团簇的实验和理论研究现状

田志美1,2, 刘汪丹1, 程龙玖1*   

  1. 1. 安徽大学化学化工学院 合肥 230601;
    2. 阜阳师范学院化学与材料工程学院 阜阳 236037
  • 收稿日期:2015-05-01 修回日期:2015-06-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 程龙玖 E-mail:clj@ustc.edu
  • 基金资助:
    国家自然科学基金项目(No.21273008,21573001)资助

Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters

Tian Zhimei1,2, Liu Wangdan1, Cheng Longjiu1*   

  1. 1. College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China;
    2. School of Chemistry and Materials Engineering, Fuyang Teachers College, Fuyang 236037, China
  • Received:2015-05-01 Revised:2015-06-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273008, 21573001).
硫醇保护的金团簇(Aum(SR)n,mn为Au和SR的数目)由于其特殊的光学、电学性质以及特别的物理/化学性质,在纳米催化、生物医学和光学设备中具有潜在的应用价值。Au102(SR)54和Au25(SR)18-团簇单晶结构的确定是Aum(SR)n团簇合成的两大突破,它们的结构揭示了Aum(SR)n团簇中Au-S键新的成键特征和新的原子堆积方式。本文总结了Aum(SR)n团簇实验合成单晶结构的研究成果,概述了有谱图无单晶结构的Aum(SR)n团簇的实验进展,介绍了密度泛函理论预测Aum(SR)n团簇的研究概况,并结合本课题组的研究课题归纳了解释团簇稳定性和化学成键方式的超原子复合物模型,超原子网络模型和超级共价键模型及其应用。最后,对Aum(SR)n团簇的研究趋势进行了展望。
Due to the special optical, electronic properties, particular physical/chemical properties, thiolate protected gold nanoclusters (Aum(SR)n, in which m and n are the numbers of Au and SR) have potential applications in nanocatalysis, biomedicine and optical devices. Two breakthroughs in Aum(SR)n clusters are the crystal structure determinations of Au102(SR)54 and Au25(SR)18- clusters, which uncover the new Au-S chemical bonding features as well as the new atomic packing structures in Aum(SR)n clusters. In this paper, major advances of the Aum(SR)n clusters in the experimentally determined crystal structures are generalized. This is followed by the introduction of the progresses in the experimentally synthesized Aum(SR)n clusters with mass spectroscopy and the progresses made by the density functional theory predictions. We combine our study subject to generalize superatom complex model, superatom-network model and super valence bond model which are used to interpret the stability and chemical bonding patterns of Aum(SR)n clusters. Moreover, we take several Aum(SR)n clusters as examples to introduce the applications of the three models. Finally, we give future outlook of the Aum(SR)n clusters.

Contents
1 Introduction
2 Experiments and theoretical predictions of Aum(SR)n clusters
2.1 Aum(SR)n clusters with single crystal structures
2.2 Aum(SR)n clusters with mass spectroscopy
2.3 Aum(SR)n clusters by DFT structural predictions
3 Theoretical models for Aum(SR)n clusters
3.1 Superatom complex (SAC) model
3.2 Superatom-network (SAN) model
3.3 Super valence bond (SVB) model
4 Conclusion and outlook

中图分类号: 

()
[1] Jung J, Kang S, Han Y K. Nanoscale, 2012, 4: 4206.
[2] Zhu M Z, Aikens C M, Hendrich M P, Gupta R, Qian H F, Schatz G C, Jin R C. J. Am. Chem. Soc., 2009, 131: 2490.
[3] Cheng L J, Zhang X Z, Jin B K, Yang J L. Nanoscale, 2014, 6: 12440.
[4] Lu W, Chan K T, Wu S X, Chen Y, Che C M. Chem. Sci., 2012, 3: 752.
[5] Zhu M Z, Aikens C M, Hollander F J, Schatz G C, Jin R C. J. Am. Chem. Soc., 2008, 130: 5883.
[6] Jin R C. Nanoscale, 2015, 7: 1549.
[7] Pei Y, Zeng X C. Nanoscale, 2012, 4: 4054.
[8] Jin R C, Nobusada K. Nano Res., 2014, 7: 285.
[9] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127: 5261.
[10] Akola J, Walter M, Whetten R L, Häkkinen H, Grönbeck H. J. Am. Chem. Soc., 2008, 130: 3756.
[11] Chen S, Wang S X, Zhong J, Song Y B, Zhang J, Sheng H T, Pei Y, Zhu M Z. Angew. Chem. Int. Ed., 2015, 54: 3145.
[12] Cheng L J, Ren C D, Zhang X Z, Yang J L. Nanoscale, 2013, 5: 1475.
[13] Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318: 430.
[14] Jian N, Stapelfeldt C, Hu K J, Fröba M, Palmer R E. Nanoscale, 2015, 7: 885.
[15] Knoppe S, Boudon J, Dolamic I, Dass A, Bürgi T. Anal. Chem., 2011, 83: 5056.
[16] Knoppe S, Dolamic I, Dass A, Bürgi T. Angew. Chem. Int. Ed., 2012, 51: 7589.
[17] Lopez Acevedo O, Tsunoyama H, Tsukuda T, Aikens C M. J. Am. Chem. Soc., 2010, 132: 8210.
[18] Levi Kalisman Y, Jadzinsky P D, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell D A, Kornberg R D. J. Am. Chem. Soc., 2011, 133: 2976.
[19] Heaven M W, Dass A, White P S, Holt K M, Murray R W. J. Am. Chem. Soc., 2008, 130: 3754.
[20] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc., Chem. Commun., 1994, 801.
[21] Whetten R L, Khoury J T, Alvarez M M, Murthy S, Vezmar I, Wang Z, Stephens P W, Cleveland C L, Luedtke W, Landman U. Adv. Mater., 1996, 8: 428.
[22] Schaaff T G, Knight G, Shafigullin M N, Borkman R F, Whetten R L. J. Phys. Chem. B, 1998, 102: 10643.
[23] Schaaff T G, Shafigullin M N, Khoury J T, Vezmar I, Whetten R L. J. Phys. Chem. B, 2001, 105: 8785.
[24] Price R C, Whetten R L. J. Am. Chem. Soc., 2005, 127: 13750.
[25] Wyrwas R B, Alvarez M M, Khoury J T, Price R C, Schaaff T G, Whetten R L. Eur. Phys. J. D, 2007, 43: 91.
[26] Ingram R S, Hostetler M J, Murray R W, Schaaff T G, Khoury J T, Whetten R L, Bigioni T P, Guthrie D K, First P N. J. Am. Chem. Soc., 1997, 119: 9279.
[27] Chen S W, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M, Whetten R L. Science, 1998, 280: 2098.
[28] Templeton A C, Wuelfing W P, Murray R W. Accounts Chem. Res., 2000, 33: 27.
[29] Lee D, Donkers R L, Wang G, Harper A S, Murray R W. J. Am. Chem. Soc., 2004, 126: 6193.
[30] Guo R, Song Y, Wang G L, Murray R W. J. Am. Chem. Soc., 2005, 127: 2752.
[31] Wang G L, Guo R, Kalyuzhny G, Choi J P, Murray R W. J. Phys. Chem. B, 2006, 110: 20282.
[32] Tracy J B, Kalyuzhny G, Crowe M C, Balasubramanian R, Choi J P, Murray R W. J. Am. Chem. Soc., 2007, 129: 6706.
[33] Qian H F, Zhu M Z, Wu Z K, Jin R C. Accounts Chem. Res., 2012, 45: 1470.
[34] Zhu M Z, Lanni E, Garg N, Bier M E, Jin R C. J. Am. Chem. Soc., 2008, 130: 1138.
[35] Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T. J. Am. Chem. Soc., 2004, 126: 6518.
[36] Donkers R L, Lee D, Murray R W. Langmuir, 2004, 20: 1945.
[37] Iwasa T, Nobusada K. J. Phys. Chem. C, 2007, 111: 45.
[38] Crasto D, Malola S, Brosofsky G, Dass A, Häkkinen H. J. Am. Chem. Soc., 2014, 136: 5000.
[39] Yang H Y, Wang Y, Edwards A J, Yan J Z, Zheng N F. Chem. Commun., 2014, 50: 14325.
[40] Qian H F, Eckenhoff W T, Zhu Y, Pintauer T, Jin R C. J. Am. Chem. Soc., 2010, 132: 8280.
[41] Zeng C J, Qian H F, Li T, Li G, Rosi N L, Yoon B, Barnett R N, Whetten R L, Landman U, Jin R C. Angew. Chem., 2012, 124: 13291.
[42] Das A, Liu C, Zeng C J, Li G, Li T, Rosi N L, Jin R C. J. Phys. Chem. A, 2014, 118: 8264.
[43] Zeng C J, Li T, Das A, Rosi N L, Jin R C. J. Am. Chem. Soc., 2013, 135: 10011.
[44] Das A, Li T, Nobusada K, Zeng C, Rosi N L, Jin R C. J. Am. Chem. Soc., 2013, 135: 18264.
[45] Das A, Li T, Li G, Nobusada K, Zeng C J, Rosi N L, Jin R C. Nanoscale, 2014, 6: 6458.
[46] Zeng C J, Liu C, Chen Y X, Rosi N L, Jin R C. J. Am. Chem. Soc., 2014, 136: 11922.
[47] Nimmala P R, Knoppe S, Jupally V R, Delcamp J H, Aikens C M, Dass A. J. Phys. Chem. B, 2014, 118: 14157.
[48] Crasto D, Barcaro G, Stener M, Sementa L, Fortunelli A, Dass A. J. Am. Chem. Soc., 2014, 136: 14933.
[49] Das A, Liu C, Byun H Y, Nobusada K, Zhao S, Rosi N, Jin R C. Angew. Chem., 2015, 127: 3183.
[50] Dass A, Theivendran S, Nimmala P R, Kumara C, Jupally V R, Fortunelli A, Sementa L, Barcaro G, Zuo X, Noll B C. J. Am. Chem. Soc., 2015, 137: 4610.
[51] Zeng C J, Chen Y X, Kirschbaum K, Appavoo K, Sfeir M Y, Jin R C. Science Adv., 2015, 1: e1500045.
[52] Hamouda R, Bertorelle F, Rayane D, Antoine R, Broyer M, Dugourd P. Int. J. Mass Spectrom., 2013, 335: 1.
[53] Shibu E S, Pradeep T. Chem. Mater., 2011, 23: 989.
[54] Yao Q, Yu Y, Yuan X, Yu Y, Xie J P, Lee J Y. Small, 2013, 9: 2696.
[55] Dass A, Theivendran S, Nimmala P R, Kumara C, Jupally V R, Fortunelli A, Sementa L, Barcaro G, Zuo X, Noll B C. J. Am. Chem. Soc., 2015, 137: 4610.
[56] Azubel M, Koivisto J, Malola S, Bushnell D, Hura G L, Koh A L, Tsunoyama H, Tsukuda T, Pettersson M, Häkkinen H, Kornberg R D. Science, 2014, 345: 909.
[57] Qian H F, Jin R C. Nano Lett., 2009, 9: 4083.
[58] Dass A. J. Am. Chem. Soc., 2009, 131: 11666.
[59] Qian H F, Zhu Y, Jin R C. J. Am. Chem. Soc., 2010, 132: 4583.
[60] Negishi Y, Sakamoto C, Ohyama T, Tsukuda T. J. Phys. Chem. Lett., 2012, 3: 1624.
[61] Zeng C J, Chen Y X, Li G, Jin R C. Chem. Commun., 2014, 50: 55.
[62] Nimmala P R, Yoon B, Whetten R L, Landman U, Dass A. J. Phys. Chem. A, 2013, 117: 504.
[63] Nimmala P R, Dass A. J. Am. Chem. Soc., 2011, 133: 9175.
[64] Nimmala P R, Dass A. J. Am. Chem. Soc. 2014, 136: 17016.
[65] Kumara C, Dass A. Anal. Chem., 2014, 86: 4227.
[66] Qian H F, Jin R C. Chem. Mater., 2011, 23: 2209.
[67] Qian H F, Jin R C. Chem. Commun., 2011, 47: 11462.
[68] Li G, Zeng C J, Jin R C. J. Am. Chem. Soc., 2014, 136: 3673.
[69] Fields Zinna C A, Sardar R, Beasley C A, Murray R W. J. Am. Chem. Soc., 2009, 131: 16266.
[70] Liu C, Lin J, Shi Y W, Li G. Nanoscale, 2015, 7: 5987.
[71] Yu Y, Luo Z T, Chevrier D M, Leong D T, Zhang P, Jiang D E, Xie J P. J. Am. Chem. Soc., 2014, 136: 1246.
[72] Kumara C, Zuo X B, Ilavsky J, Cullen D, Dass A. J. Phys. Chem. C, 2015, 119: 11260.
[73] Kohn W, Sham L J. Phys. Rev., 1965, 140: A1133.
[74] Hohenberg P, Kohn W. Phys. Rev., 1964, 136: B864.
[75] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865.
[76] Perdew J P, Wang Y. Phys. Rev. B, 1992, 45: 13244.
[77] Tao J, Perdew J P, Staroverov V N, Scuseria G E. Phys. Rev. Lett., 2003, 91: 146401.
[78] Tlahuice Flores A, Jose Yacamán M, Whetten R L. Phys. Chem. Chem. Phys., 2013, 15: 19557.
[79] Tang Q, Jiang D E. J. Phys. Chem. C, 2015, 119: 2904.
[80] Pei Y, Pal R, Liu C Y, Gao Y, Zhang Z H, Zeng X C. J. Am. Chem. Soc., 2012, 134: 3015.
[81] Cheng L J, Yuan Y, Zhang X Z, Yang J L. Angew. Chem. Int. Ed., 2013, 52: 9035.
[82] Gao Y, Shao N, Zeng X C. ACS Nano, 2008, 2: 1497.
[83] Jiang D E, Walter M, Akola J. J. Phys. Chem. C, 2010, 114: 15883.
[84] Hulkko E, Lopez Acevedo O, Koivisto J, Levi Kalisman Y, Kornberg R D, Pettersson M, Häkkinen H. J. Am. Chem. Soc., 2011, 133: 3752.
[85] Häkkinen H, Walter M, Grönbeck H. J. Phys. Chem. B, 2006, 110: 9927.
[86] Chaki N K, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T. J. Am. Chem. Soc., 2008, 130: 8608.
[87] Pei Y, Gao Y, Zeng X C. J. Am. Chem. Soc., 2008, 130: 7830.
[88] Jiang D E, Tiago M L, Luo W D, Dai S. J. Am. Chem. Soc., 2008, 130: 2777.
[89] Jiang D E, Chen W, Whetten R L, Chen Z F. J. Phys. Chem. C, 2009, 113: 16983.
[90] Alvarez M M, Khoury J T, Schaaff T G, Shafigullin M N, Vezmar I, Whetten R L. J. Phys. Chem. B, 1997, 101: 3706.
[91] Schaaff T G, Shafigullin M N, Khoury J T, Vezmar I, Whetten R, Cullen W G, First P N, Gutierrez Wing C, Ascensio J, Jose Yacaman M J. J. Phys. Chem. B, 1997, 101: 7885.
[92] Häkkinen H, Barnett R N, Landman U. Phys. Rev. Lett., 1999, 82: 3264.
[93] Garzón I, Rovira C, Michaelian K, Beltrán M, Ordejón P, Junquera J, Sánchez Portal D, Artacho E, Soler J. Phys. Rev. Lett., 2000, 85: 5250.
[94] Jiang D E, Luo W D, Tiago M L, Dai S. J. Phys. Chem. C, 2008, 112: 13905.
[95] Lopez Acevedo O, Akola J, Whetten R L, Gronbeck H, Häkkinen H. J. Phys. Chem. C, 2009, 113: 5035.
[96] Tlahuice Flores A, Black D M, Bach S B H, Jose Yacamán M, Whetten R L. Phys. Chem. Chem. Phys., 2013, 15: 19191.
[97] Tlahuice Flores A. Phys. Chem. Chem. Phys., 2015, 17: 5551.
[98] Koivisto J, Malola S, Kumara C, Dass A, Häkkinen H, Pettersson M. J. Phys. Chem. Lett., 2012, 3: 3076.
[99] Walter M, Akola J, Lopez Acevedo O, Jadzinsky P D, Calero G, Ackerson C J, Whetten R L, Grönbeck H, Häkkinen H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 9157.
[100] Cheng L J, Yang J L. J. Chem. Phys., 2013, 138: 141101.
[101] Jiang D E, Whetten R L, Luo W D, Dai S. J. Phys. Chem. C, 2009, 113: 17291.
[102] Gao Y. J. Phys. Chem. C, 2013, 117: 8983.
[103] Zubarev D Y, Boldyrev A I. Phys. Chem. Chem. Phys., 2008, 10: 5207.
[104] Pei Y, Lin S S, Su J C, Liu C Y. J. Am. Chem. Soc., 2013, 135: 19060.
[105] Pei Y, Tang J, Tang X Q, Huang Y Q, Zeng X C. J. Phys. Chem. Lett., 2015, 6: 1390.
[106] Wan X K, Lin Z W, Wang Q M. J. Am. Chem. Soc., 2012, 134: 14750.
[107] Yuan Y, Cheng L J, Yang J L. J. Phys. Chem. C, 2013, 117: 13276.
[108] Tian Z M, Cheng L J. Phys. Chem. Chem. Phys., 2015, 17: 13421.
[1] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[2] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[3] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[4] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[5] 李瑜玲, 赵君博, 郭寅龙. 常压电喷雾离子化的机理及应用[J]. 化学进展, 2019, 31(1): 94-109.
[6] 任娟, 边申, 王奕允, 孔祥蕾. 幻数团簇丝氨酸八聚体:结构和手性特征[J]. 化学进展, 2018, 30(4): 383-397.
[7] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[8] 刘婧靖, 何晓伟, 何燕, 喻目千, 蒋乐, 陈波. 纸喷雾敞开式质谱法的发展和应用[J]. 化学进展, 2017, 29(6): 659-666.
[9] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[10] 徐冲, 范艳璇, 范琳媛, 曹洁*, 胡长文*. 质谱在多金属氧簇化学中的应用[J]. 化学进展, 2013, 25(05): 809-820.
[11] 储根柏, 陈军, 刘付轶*, 盛六四* . 气相自由基反应动力学的光电离质谱研究[J]. 化学进展, 2012, 24(11): 2097-2105.
[12] 彭晓敏, 张金超, 高愈希, 柴之芳. 金属蛋白的提取分离技术[J]. 化学进展, 2012, 24(05): 834-843.
[13] 张佳玲, 霍飞凤, 周志贵, 白玉, 刘虎威. 实时直接分析质谱的原理及应用[J]. 化学进展, 2012, 24(01): 101-109.
[14] 石磊, 刘淑莹, Zubarev Roman. 电子捕获解离技术在生物质谱中的作用[J]. 化学进展, 2011, 23(8): 1710-1718.
[15] 王胜, 邹霞, 张延. 基于质谱的蛋白质O-糖基化分析研究进展[J]. 化学进展, 2010, 22(12): 2428-2435.