English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 571-584 DOI: 10.7536/PC141117 前一篇   后一篇

• 综述与评论 •

基于纳米材料的表面辅助激光解吸离子化质谱研究

王方丽1, 洪敏*1,2, 许丽丹1, 耿志荣*2   

  1. 1. 聊城大学化学化工学院 聊城 252059;
    2. 南京大学化学化工学院 配位化学国家重点实验室 南京 210093
  • 收稿日期:2014-11-01 修回日期:2014-12-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 洪敏, 耿志荣 E-mail:hongminlcu@163.com;njugeng@gmail.com
  • 基金资助:
    国家自然科学基金项目(No. 21105042)和山东省自然科学基金项目(No. ZR2010BQ021)资助

Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy

Wang Fangli1, Hong Min*1,2, Xu Lidan1, Geng Zhirong*2   

  1. 1. School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China;
    2. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2014-11-01 Revised:2014-12-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21105042) and the Natural Science Foundation of Shandong Province(No. ZR2010BQ021).
基质辅助激光解吸离子化质谱(MALDI-MS)作为一种常规的分析表征方法主要用于生物大分子的分析,如蛋白质、多肽、多糖及核酸等.然而,MALDI-MS中使用的有机小分子基质在低分子量区会产生背景干扰,很难分析小分子量化合物(m/z < 700).最近,基于纳米材料的免有机基质的激光解吸离子化质谱(又称为表面辅助激光解吸离子化质谱,SALDI-MS)有效解决了上述问题.SALDI-MS分析中使用的起到能量转移作用的纳米材料在低分子量区间不会产生背景干扰峰,可以将分析对象由大分子扩展到小分子.另外,SALDI-MS还具有许多其他优点,如样品制备简单、信噪比高、耐盐性好、基底表面信号重复性好及可实现样品的定量分析等,显示了较好的应用前景.本文综述了研究较多的四大类纳米材料在SALDI-MS分析、检测及成像方面的应用,包括碳纳米材料(富勒烯、碳纳米管、石墨烯及氧化石墨烯)、硅纳米材料(多孔硅、硅纳米纤维、硅纳米粒子)、其他材料纳米粒子(包括金属纳米粒子、金属氧化物纳米粒子、无机盐纳米粒子及量子点等)及纳米杂化多孔材料,详细介绍了最近的一些研究进展;并讨论了纳米材料在SALDI-MS应用中的能量转移机理.最后,讨论了该领域未来的研究内容和方向以及亟待研究的重要问题.
Matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS) is a routine analytical characterization method, which was initially applied in the analysis of biological macromolecules, such as protein, polypeptide, polysaccharide and nucleic acid. However, MALDI-MS does not allow the sensitive detection of analytes in the low mass region (m/z < 700) because of strong background signals arising from the matrix. Recently, the organic matrix-free laser desorption ionization mass spectrometry based on nanomaterials (which is also known as surface-assisted laser desorption ionization mass spectrometry, SALDI-MS) has effectively solved the above problem. With the use of nanomaterial-based MS technique, the detectable mass range of SALDI-MS has been extended from the low-mass region for the analysis of small molecules to the high-mass region for the analysis of large molecules. The nanomaterial-based MS technique transfers energy through the nanometer material with no interference peaks between the matrix and analyte in the low molecular weight. In addition, SALDI-MS also affords several advantages, such as simple sample preparation, high signal-to-noise ratio, high salt tolerance, the improved reproducibility of peak intensities and the possibility of quantitative analysis, showing good prospects. In this paper, we mainly describe and review in detail four types of nanomaterials developed for application in SALDI-MS detection and imaging that were reported in recent years, including carbon nanomaterials (fullerenes, carbon nanotubes, graphene and graphene oxide), silicon nanomaterials (porous silicon, silicon nanofiber, silica nanoparticles), other nanoparticles (including metal nanoparticles, metal oxide nanoparticles, inorganic nanoparticles and quantum dots) and nanoporous materials. Besides, the energy transfer mechanism of nanomaterials in the application of SALDI-MS is discussed. Finally, the future research content and direction as well as the important problem to be studied are discussed.

Contents
1 Introduction
2 Application of different nanomaterials in SALDI-MS
2.1 Carbon-based nanomaterials for SALDI-MS
2.2 Silicon-based nanomaterials for SALDI-MS
2.3 Other nanoparticles for SALDI-MS
2.4 Hybrid nanoporous materials for SALDI-MS
3 Mechanism of SALDI-MS
4 Conclusion and outlook

中图分类号: 

()
[1] Karas M, Hillenkamp F. Anal. Chem., 1988, 60: 2299.
[2] Hillenkamp F, Peter-Katalinic J. Weinheim:Wiley-VCH, 2007, 1: 1.
[3] 张森(Zhang S),倪彧(Ni Y),李树奇(Li S Q),孔祥蕾(Kong X L). 化学进展(Progress in Chemistry), 2014, 26: 158.
[4] Chiu T C, Huang L S, Lin P C, Chen Y C, Chen Y J, Lin C C, Chang H T. Recent Pat. Nanotechnol., 2007, 1: 99.
[5] Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Rapid Commun. Mass Spectrom., 1988, 2: 151.
[6] Sunner J, Dratz E, Chen Y C. Anal. Chem., 1995, 67: 4335.
[7] Wei J, Buriak J M, Siuzdak G. Nature, 1999, 399: 243.
[8] Law K P, Larkin J R. Anal. Bioanal. Chem., 2011, 399: 2597.
[9] Chiang C K, Chen W T, Chang H T. Chem. Soc. Rev., 2011, 40: 1269.
[10] Peterson D S. Mass Spectrom. Rev., 2007, 26: 19.
[11] Zhang J L, Li Z, Zhang C S, Feng B S, Zhou Z G, Bai Y, Liu H W. Anal. Chem., 2012, 84: 3296.
[12] Rainer M, Najam-ul-Haq M, Huck C W, Vallant R M, Heigl N, Hahn H, Bakry R, Bonn G K, Recent Pat. Nanotechnol., 2007, 1: 113.
[13] Bonn G K, Feuerstein I, Huck C W, Najam-ul-Haq M, Rainer M, Stecher G, Schwarzmann, G., Steinmüller-Nethl, D., Steinmüller D. WO 05096346, 2005.
[14] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162.
[15] Nakamura E, Isobe H. Acc. Chem. Res., 2003, 36: 807.
[16] Benyamini H, Shulman-Peleg A, Wolfson H J, Belgorodsky B, Fedeev L, Gozin M. Bioconjugate Chem., 2006, 17: 378.
[17] Hopwood F G, Michalak L, Alderdice D S, Fisher K J, Willett G D. Rapid Commun. Mass Spectrom., 1994, 8: 881.
[18] Shiea J, Huang J P, Teng C F, Jeng J, Wang L Y, Chiang L Y. Anal. Chem., 2003, 75: 3587.
[19] Xu S, Li Y, Zou H F, Qiz J,Guo Z, Guo B. Anal. Chem., 2003, 75: 6191.
[20] Chen W Y, Wang L S, Chiu H T, Chen Y C, Lee C Y. J. Am. Chem. Soc.Mass Spectrom., 2004, 15: 1629.
[21] Pan C S, Xu S Y, Zou H F, Guo Z, Zhang Y, Guo B C. J. Am. Soc. Mass Spectrom., 2005, 16: 263.
[22] Ren S F, Zhang L, Cheng Z H, Guo Y L. J. Am. Chem. Soc., 2005, 16: 333.
[23] Pan C S, Xu S Y, Hu L G, Su X Y, Qu J J, Zou H F, Guo Z, Zhang Y, Guo B C. J. Am. Soc. Mass Spectrom., 2005, 16: 883.
[24] Hu L, Xu S Y, Pan C S, Yuan C G, Zou H F, Jiang G B. Environ. Sci. Technol., 2005, 39: 8442.
[25] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[26] Dong X L, Cheng J S, Li J H, Wang Y S. Anal. Chem., 2010, 82: 6208.
[27] Lu M H, Lai Y Q, Chen G N, Cai Z W. Anal. Chem., 2011, 83: 3161.
[28] Shi C Y, Meng J R, Deng C H. Chem. Commun., 2012, 48: 2418.
[29] Kawasaki H, Nakai K, Arakawa R, Athanassiou E K, Grass R N, Stark W J. Anal. Chem., 2012, 84: 9268.
[30] Gulbakan B, Yasun E, Shukoor M I, Zhu Z, You M X, Tan X H, Sanchez H, Powell D H, Dai H J, Tan W H. J. Am. Chem. Soc., 2010, 132: 17408.
[31] Kim Y K, Na H K, Kwack S J, Ryoo S R, Lee Y M, Hong S H, Hong S W, Jeong Y, Min D H. ACS Nano, 2011, 5: 4550.
[32] Kim Y K, Min D H. Langmuir, 2012, 28: 4453.
[33] Shen Z X, Thomas J J, Averbuj C, Broo K M, Engelhard M, Crowell E J, Finn M G, Siuzdak G. Anal. Chem., 2001, 73: 612.
[34] Nordstrom A, Apon J V, Uritboonthai W, Go E, Siuzdak G. Anal. Chem., 2006, 78: 272.
[35] Pihlainen K, Grigoras K, Franssila S, Ketola R, Kotiaho T, Kostiainen R. J. Mass Spectrom., 2005, 40: 539.
[36] Zou H F, Zhang Q C, Guo Z, Guo B C, Zhang Q, Chen X M. Angew. Chem. Int. Ed., 2002, 41: 646.
[37] Go E P, Apon J V, Luo G, Saghatelian A, Daniels R H, Sahi V, Dubrow R, Cravatt B F, Vertes A, Siuzdak G. Anal. Chem., 2005, 77: 1641.
[38] Northen T R, Yanes O, Northen M T, Marrinucci D, Uritboonthai W, Apon J, Golledge S L, Nordstr A, Siuzdak G. Nature, 2007, 449: 1033.
[39] Tata A, Fernandes A P, Santos V G, Alberici R M, Araldi D, Parada C A, Braguini W, Veronez L, Bisson G S, Reis F Z, Alberici L C, Eberlin M N. Anal. Chem., 2012, 84: 6341.
[40] Woo H K, Northen T R, Yanes O, Siuzdak G. Nat. Protoc., 2008, 3: 1341.
[41] Yanes O, Woo H K, Northen T R, Oppenheimer S R, Shriver L, Apon J, Estrada M N, Potchoiba M J, Steenwyk R, Manchester M, Siuzdak G. Anal. Chem., 2009, 81: 2969.
[42] Patti G J, Woo H K, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon J V, Steenwyk R, Manchester M, Siuzdak G. Anal. Chem., 2010, 82: 121.
[43] Kinumi T, Saisu T, Takayama M, Niwa H. J. Mass Spectrom., 2000, 35: 417.
[44] Zhang Q C, Zou H F, Guo Z, Zhang Q, Chen X, Ni J Y. Rapid Commun. Mass Spectrom., 2001, 15: 217.
[45] Wen X J, Dagan S, Wysocki V H. Anal. Chem., 2007, 79: 434.
[46] Dupre? M, Enjalbal C, Cantel S, Martinez J, Megouda N, Hadjersi T, Boukherroub R, Coffinier Y. Anal. Chem., 2012, 84: 10637
[47] McLean J A, Stumpo K A, Russell D H. J. Am. Chem. Soc., 2005, 127: 5304.
[48] Castellana E T, Russell D H. Nano Lett., 2007, 7: 3023.
[49] Wu H P, Yu C J, Lin C Y, Lin Y H, Tseng W L. J. Am. Soc. Mass Spectrom., 2009, 20: 875.
[50] Chiang N C, Chiang C K, Lin Z H, Chiu T C, Chang H T. Rapid Commun. Mass Spectrom., 2009, 23: 3063.
[51] Su C L, Tseng W L. Anal. Chem., 2007, 79: 1626.
[52] Amendola V, Litti L, Meneghetti M. Anal. Chem., 2013, 85: 11747.
[53] Chen W T, Chiang C K, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 864.
[54] Chen L C, Yonehama J, Ueda T, Hori H, Hiraoka K, J. Mass Spectrom., 2007, 42: 346.
[55] Shibamoto K, Sakata K, Nagoshi K, Korenaga T. J. Phys. Chem. C, 2009, 113: 17774.
[56] Castellana E T, Gamez R C, Gomez M E, Russell D H. Langmuir, 2010, 26: 6066.
[57] Gámez F, Hurtado P, Castillo P M, Caro C, Hortal A R, Zaderenko P, Martínez-Haya B. Plasmonics, 2010, 5: 125.
[58] Weng C, Cang J S, Chang J Y, Hsiung T M, Unnikrishnan B, Hung Y L, Tseng Y T, Li Y J, Shen Y W, Huang C C. Anal. Chem., 2014, 86: 3167.
[59] Liu Y C, Chang H T, Chiang C K, Huang C C. ACS Appl. Mater. Interfaces, 2012, 4: 5241.
[60] Li Y J, Tseng Y T, Unnikrishnan B, Huang C C. ACS Appl. Mater. Interfaces, 2013, 5: 9161.
[61] Chiu W C, Huang C C. Anal. Chem., 2013, 85: 6922.
[62] Liu Y C, Chiang C K, Chang H T, Lee Y F, Huang C C. Adv. Funct. Mater., 2011, 21: 4448.
[63] Zhu Z J, Ghosh P S, Miranda O R, Vachet R W, Rotello V M. J. Am. Chem. Soc., 2008, 130: 14139.
[64] Zhu Z J, Rotello V M, Vachet R W. Analyst, 2009, 134: 2183.
[65] Chiu T C, Chang L C, Chiang C K, Chang H T. J. Am. Soc. Mass Spectrom., 2008, 19: 1343.
[66] Shrivas K, Wu H F. Rapid Commun. Mass Spectrom., 2008, 22: 2863.
[67] Wang M T, Liu M H, Wang R C, Changa S Y. J. Am. Soc. Mass Spectrom., 2009, 20: 1925.
[68] Yan H, Xu N, Huang W Y, Han H M, Xiao S J. Int. J. Mass Spectrom., 2009, 281: 1.
[69] Cha S, Song Z H, Nikolau B J, Yeung E S. Anal. Chem., 2009, 81: 2991.
[70] Hayasaka T, Goto-Inoue N, Zaima N, Shrivas K, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M. J. Am. Soc. Mass Spectrom., 2010, 21: 1446.
[71] Tu W, Takai K, Fukui K I, Miyazaki A, Enoki T, J. Phys. Chem. B, 2003, 107: 10134.
[72] Bouslimani A, Bec N, Glueckmann M, Hirtz C, Larroque C. Rapid Commun. Mass Spectrom., 2010, 24: 415.
[73] Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P. Angew. Chem. Int. Ed., 2006, 45: 7824.
[74] Kawasaki H, Ozawa T, Hisatomi H, Arakawa R. Rapid Commun. Mass Spectrom., 2012, 26: 1849.
[75] Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, Mafune F. Anal. Sci., 2009, 25: 339.
[76] Kawasaki H, Yonezawa T, Watanabe T, Arakawa R. J. Phys. Chem. C, 2007, 111: 16278.
[77] Chiang C K, Chiang N C, Lin Z H, Lan G Y, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 1204.
[78] Yao T, Kawasaki H, Watanabe T, Arakawa R. Int. J. Mass Spectrom., 2010, 291: 145.
[79] Kawasaki H, Yao T, Suganuma T, Okumura K, Iwaki Y, Yonezawa T, Kikuchi T, Arakawa R. Chem. Eur. J., 2010, 16: 10832.
[80] Watanabe T, Kawasaki H, Yonezawa T, Arakawa R. J. Mass Spectrom., 2008, 43: 1063.
[81] Kailasa S K, Wu H F. Microchim Acta, 2013, 180: 405.
[82] Chen Z M, Geng Z R, Shao D L, Mei Y H, Wang Z L. Anal. Chem., 2009, 81: 7625.
[83] Chiang C K, Yang Z, Lin Y W, Chen W T, Lin H J, Chang H T. Anal. Chem., 2010, 82: 4543.
[84] Chen W T, Chiang C K, Lee C H, Chang H T. Anal. Chem., 2012, 84: 1924.
[85] Arakawa R, Kawasaki H. Anal. Sci., 2010, 26: 1229.
[86] Okuno S, Arakawa R, Okamoto K, Matsui Y, Seki S, Kozawa T, Tagawa S, Wada Y, Anal. Chem., 2005, 77: 5364.
[87] Wada Y, Yanagishita T, Masuda H. Anal. Chem., 2007, 79: 9122.
[88] Jokinen V, Aura S, Luosujvi L, Sainiemi L, Kotiaho T, Franssila S, Baumann M. J. Am. Soc. Mass Spectrom., 2009, 20: 1723.
[89] Nitta S, Yamamoto A, Kurita M, Arakawa R, Kawasaki H. ACS Appl. Mater. Interfaces., 2014, 6: 8387.
[90] Abdelhamid H N, Wu B S, Wu H F. Talanta, 2014, 126: 27.
[91] Kawasaki H, Sugitani T, Watanabe T, Yonezawa T, Moriwaki H, Arakawa R. Anal. Chem., 2008, 80: 7524.
[92] Kuo T R, Wang D Y, Chiu Y C, Yeh Y C, Chen W T, Chen C H, Chen C W, Chang H C, Hu C C, Chen C C. Anal. Chim. Acta, 2014, 809: 97.
[93] Hong M, Qiu F, Huang L L, Zhu J. J. Phys. Chem. C, 2008, 112: 11078.
[94] Hong M, Zhou X, Li J P, Tian Y, Zhu J. Anal. Chem., 2009, 81: 8839.
[95] Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Rapid Commun. Mass Spectrom., 1988, 2: 151.
[96] Law K P, Larkin J R. Anal. Bioanal. Chem., 2011, 399: 2597.
[97] Tang H W, Ng K M, Lu W, Che C M, Anal. Chem., 2009, 81: 4720.
[98] Chen S, Zheng H, Wang J N, Hou J, He Q, Liu H H, Xiong C Q, Kong X L, Nie Z X. Anal. Chem., 2013, 85: 6646.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[4] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[5] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[6] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[7] 李旭光, 杜婷婷, 刘金, 刘新蕾, 马朋坤, 戚豫, 陈威*. 人工碳纳米材料的环境转化及其效应[J]. 化学进展, 2017, 29(9): 1021-1029.
[8] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[9] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[10] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[11] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[12] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[13] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.
[14] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[15] 袁婷联, 蒋莹琰, 王伟. 光热显微术:基于光吸收的单分子成像技术[J]. 化学进展, 2016, 28(5): 607-616.