English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 2003-2011 DOI: 10.7536/PC180135 前一篇   后一篇

• 综述 •

仿生超疏油材料在苛刻工况条件下的应用

邵建文1, 杨付超1*, 郭志光1,2*   

  1. 1. 湖北大学功能材料绿色制备与应用教育部重点实验室 武汉 430062;
    2. 中国科学院兰州化学物理研究所固体润滑国家重点实验室 兰州 730000
  • 收稿日期:2018-01-30 修回日期:2018-08-06 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 杨付超, 郭志光 E-mail:yfc@hubu.edu.cn;zguo@licp.cas.cn
  • 基金资助:
    国家自然科学基金项目(No.51705138,51735013)资助

The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions

Jianwen Shao1, Fuchao Yang1*, Zhiguang Guo1,2*   

  1. 1. Key Laboratory Functional Materials Green Preparation and Application of Ministry of Education, Hubei University, Wuhan 430062;
    2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2018-01-30 Revised:2018-08-06 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51705138, 51735013).
超双疏兼备超疏水和超疏油两种极端不润湿现象,其中超疏油的实现难度更大,应用前景广阔。为了获得超疏油材料,通常采用仿生思路,在材料表面构建粗糙结构和以含氟低表面能物质修饰表面。表面粗糙结构在机械力学作用下易遭到破坏,例如摩擦和冲击。低表面能物质修饰层在光照条件下易分解,而诸多的太阳能装置如太阳能电池板,必须在室外工作。耐紫外的超疏油性可以帮助这些设施实现高效工作并延长使用期限,节约资源。更进一步,科研人员研究了超疏油材料在各种苛刻条件下的可靠性。本文应用新进展聚焦在超疏油材料在紫外线照射下的可靠性或可逆响应性;超疏油材料经过撞击之后的油滴接触角变化;在高温条件下超疏油材料的极端润湿性能保持能力;在冲击条件下的稳定性,甚至包括了多种复合苛刻条件下的超疏油材料的耐受性。由于大多的工业环境无法避开摩擦和腐蚀,因此本文着重从超疏油材料的耐摩擦性和抗腐蚀性两个方面讨论了其研究现状,同时也讨论了超疏油在其他工程应用方面的可靠性。最后,总结了各实验方案的优缺点、实验与工业化过程中存在的问题、有望突破的方向,以及作者对于在苛刻工况条件下提升超疏油材料可靠性的观点。
The superamphiphobicity includes extremely nonwetting phenomena of superhydrophobicity and superoleophobicity. Superoleophobicity is relatively harder to realize but has a lot of promising applications. The biomimetic methods are usually adopted to acquire superoleophobic materials, including building up rough structures and modifying materials with low surface energy on surfaces. The rough structures are easy to be destroyed by mechanical effects such as friction and impact, since many situations of using superoleophobic materials involve the gear friction and bearing transmission. The low surface energy materials tend to decompose under UV irradiation, however, a range of solar devices which include solar panels have to work outdoor. Superoleophobicity with UV resistance applied on these devices helps to prolong service life while maintaining the working effiency, which can save energy and fulfill eco-friendly industry. For solving these problems, researchers study reliability of superoleophobic materials under different kinds of harsh circumstances. This review summarizes the latest advances on the reliable performances of superoleophobic material under ultraviolet irradiation; repeated impact, high temperature, and other complicated conditions. Because most of industrial environments accompanied with corrosion and friction, this review sets an emphasis on superoleophobic materials' anticorrosion and friction resistance properties. In the end, we summarize the drawbacks and advantages of plentiful experiments, the problems of products, the promising breakthrough, and the standpoints about how to improve superoleophobic materials' performance and stability under the harsh operating conditions.
Contents
1 Introduction
2 The effect of harsh environment on superoleophobic performance
2.1 The performance of superoleophobic material under acid-base corrosion conditions
2.2 The performance of superoleophobic material under water environment
2.3 The stability of superoleophobic material under ultraviolet
2.4 Researches and developments of superoleophobic phenomena at extreme temperatures
3 Effect of mechanical and force on the stability of superoleophobicity
3.1 The influence of friction condition on the properties of superoleophobicity
3.2 The effect of load on superoleophobicity capacity
3.3 The durability of superoleophobic coatings under mechanical impact
4 Conclusion and outlook

中图分类号: 

()
[1] Choi W, Tuteja A, Mabry J M, Cohen R E, McKinley G H. J. Colloid Interface Sci., 2009, 339:208.
[2] Hsieh C T, Wu F L, Chen W Y. Surf. Coat. Technol., 2009, 203:3377.
[3] Nosonovsky M, Bhushan B. Curr. Opin. Colloid Interface Sci., 2009, 14:270.
[4] Liu K, Jiang L. Nano Today, 2011, 6:155.
[5] Jerman I, Orel B, Vuk A S, Kozelj M, Kovaè J. Thin Solid Films, 2010, 518:2710.
[6] Hsieh C T, Wu F L, Chen W Y. Mater. Chem. Phys., 2010, 121:14.
[7] Chen L, Han D, Jiang L. Colloids Surf. B, 2011, 85:2.
[8] Zhao X X, Cheng Z Q, Luan G Y, Li R, Zhang Y Y, Zhao S Z, Cao J S. Mater. Lett., 2017, 207:72.
[9] Yuan S J, Chen C, Raza A, Song R X, Zhang T J, Pehkonen S O, Liang B. Chem. Eng. J., 2017, 328:497.
[10] Al-Milaji K N, Zhao H. Surf. Coat. Technol., 2017, 316:146.
[11] Yang J, Song H J, Tang H, Ji H Y, Li C S. Appl. Surf. Sci., 2013, 280:940.
[12] Ju J P, Wang T M, Wang Q H. Colloids Surf. A, 2015, 481:151.
[13] Wang X L, Ye Q, Liu J X, Liu X J, Zhou F. J. Colloid Interface Sci., 2010, 351:261.
[14] Jerman I, Kozelj M, Orel B. Sol. Energy Mater. Sol. Cells, 2010, 94:232.
[15] Wei L, Vogler E A, Ritty T M, Lakhtakia A. Mater. Sci. Eng. C, 2011, 31:1861.
[16] Xu M, Wang G, Zeng Z X, Chen J J, Zhang X Y, Wang L S, Song W G, Xue Q J. Appl. Surf. Sci., 2017, 426:1158.
[17] Su M J, Liu Y, Zhang Y H, Wang Z G, Li Y L, He P X. Appl. Surf. Sci., 2018, 436:152.
[18] Kamalakannan K, Balakrishnan S, Sampathkumar P. Mar. Pollut. Bull., 2017, 117:492.
[19] Chen C, Liu Q, Liu C J, Yu J C. Mar. Pollut. Bull., 2017, 117:274.
[20] Siddiqui A, Verma M, Verter V. Appl. Math. Modell., 2018, 55:224.
[21] Grubesic T H, Wei R, Nelson J. Mar. Pollut. Bull., 2017, 125:318.
[22] Wang B, Liang W X, Guo Z G, Liu W M. Chem. Soc. Rev., 2015, 44:336.
[23] Kyaw W P, Sugiyama M, Takagi Y, Suzuki H, Kato N. J. Loss Prev. Process Ind., 2017, 50:325.
[24] Ren G N, Song Y M, Li X M, Zhou Y L, Zhang Z Z, Zhu X T. Appl. Surf. Sci., 2018, 428:520.
[25] Lei S, Shi Z Q, Ou J F, Wang F J, Xue M S, Li W, Qiao G J, Guan X H, Zhang J. Colloids and Surfaces A, 2017, 533:249.
[26] Sun F F, Liu W, Dong Z X, Deng Y L. Biochem. Eng. J., 2017, 330:774.
[27] Liu Y, Zhan B, Zhang K T, Kaya C, Stegmaier T, Han Z W, Ren L Q. Chem. Eng. J., 2018, 331:278.
[28] Wang Z X, Ji S Q, Zhang J, Liu Q X, He F, Peng S Q, Li Y X. J. Mater. Chem. A, 2018, 6:13959.
[29] Yang F C, Guo Z G. J. Mater. Sci., 2016, 51:7545.
[30] Jin C D, Li J P, Han S J, Wang J, Sun Q F. Appl. Surf. Sci., 2014, 320:322.
[31] Lee J W, Hwang W. J. Alloys Compd., 2017, 728:966.
[32] Martin S, Bhushan B. J. Colloid Interface Sci., 2017, 488:118.
[33] England M W, Sato T, Urata C, Wang L M, Hozumi A. J. Colloid Interface Sci., 2017, 505:566.
[34] Chen K, Jia J R, Zhao Y, Lv K, Wang C X. Mater. Des., 2017, 135:69.
[35] Cao M, Luo X M, Ren H J, Feng J Y. J. Colloid Interface Sci., 2018, 512:567.
[36] Yeong Y H, Gupta M C. Surf. Coat. Technol., 2017, 313:17.
[37] Li J, Li D M, Li W J, Li H Y, She H D, Zha F. Sep. Purif. Technol., 2016, 168:209.
[38] Diouf A, Darmanin T, Dieng S Y, Guittard F. J. Colloid Interface Sci., 2105, 453:42.
[39] Shen Y Z, Wang G Y, Zhu C L, Tao J, Lin Y B, Liu S Y, Jin M M, Xie Y H. Surf. Coat. Technol., 2017, 319:286.
[40] Jokinen V, Suvanto P, Garapaty A R, Lyytinen J, Koskinen J, Franssila S. Colloids Surf A, 2013, 434:207.
[41] Aslanidou D, Karapanagiotis I, Panayiotou C. Prog. Org. Coat., 2016, 97:44.
[42] Manna U, Lynn D L. Adv. Funct. Mater., 2015, 25:1672.
[43] Liu Y, Li S Y, Wang Y M, Wang H Y, Gao K, Han Z W, Ren L Q. J. Colloid Interface Sci., 2016, 478:164.
[44] Sun Y W, Wang L L, Gao Y Z, Guo D M. Appl. Surf. Sci., 2015, 324:825.
[45] Singh A K, Singh J K. Appl. Surf. Sci., 2017, 416:639.
[46] Guo X J, Xue C H, Jia S T, Ma J Z. Chem. Eng. J., 2017, 320:330.
[47] Toz A C, Koseoglu B. Mar. Pollut. Bull., 2018, 126:215.
[48] Bozkurtoglu S N E. Mar. Pollut. Bull., 2017, 123:57.
[49] Carroll J L, Vikebø F, Howell D, Broch O J, Nepstad R, Augustine S, Skeie G M, Bast R, Juselius J. Mar. Pollut. Bull., 2018, 126:63.
[50] Pi P H, Hou K, Zhou C L, Wen X F, Xu S P, Cheng J, Wang S F. Mater. Lett., 2016, 128:68.
[51] Hou D Y, Ding C L, Li K L, Lin D C, Wang D W, Wang J. Desalination, 2018, 428:240.
[52] Li J, Yan L, Hu W F, Li D M, Zha F, Lei Z Q. Colloids Surf. A, 2016, 489:441.
[53] Motlagh N V, Birjandi F C, Sargolzaei J, Shahtahmassebi N. Appl. Surf. Sci., 2013, 283:636.
[54] Xu B, Ding Y Y, Qu S B, Cai Z S. Appl. Surf. Sci., 2015, 356:951.
[55] Liu M M, Li J, Hou Y Y, Guo Z G. ACS Nano, 2017, 11:1113.
[56] Zhu X T, Zhang Z Z, Ren G N, Men X H, Ge B, Zhou X Y. J. Colloid Interface Sci., 2014, 421:141.
[57] Ma Q L, Cheng H F, Yu Y F, Huang Y, Lu Q P, Han S K, Chen J Z, Wang R, Fane A G, Zhang H. Small, 2017, 13:1700391.
[58] Peng S, Deng W L. Colloids Surf. A, 2015, 481:143.
[59] Muthiah P, Bhushan B, Yun K S, Kondo H. J. Colloid Inteface Sci., 2013, 409:227.
[60] Xia B B, Liu H T, Fan Y N, Chen T C, Chen C, Wang B. Mater. Des., 2017, 135:51.
[61] Denkena B, Köhler J, Schindler A, Woiwode S. Mech. Mach. Theory, 2014, 81:11.
[62] Li W, Wood A, Weidig R, Mao K. Wear, 2011, 271:2176.
[63] Li X H, Li H F, Zhang Y F, Hong J. Int. J. Mach. Tools Manuf., 2016, 106:11.
[64] Huang H, Baddour N, Liang M. J. Sound Vib., 2018, 414:43.
[65] Yao X, Gao J, Song Y L, Jiang L. Adv. Funct. Mater., 2011, 21:4270.
[66] Zhai N H, Fan L, Li L X, Zhang J P. J. Colloid Interface Sci., 2017, 505:622.
[67] Liu M M, Hou Y Y, Li J, Tie L, Guo Z G. Colloids Surf. A, 2018, 553:645.
[68] Hou K, Zeng Y C, Zhou C L, Chen J H, Wen X F, Xu S P, Cheng J, Lin Y G, Pi P H. Appl. Surf. Sci., 2017, 416:344.
[1] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[2] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[3] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[4] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[5] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[6] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[7] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[8] 顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28(5): 737-743.
[9] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[10] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.
[11] 王佳力, 唐键, 张鹏, 王珏, 李扬德, 秦岭. 体外电化学测试对镁合金体内降解行为的预测[J]. 化学进展, 2012, 24(04): 598-605.
[12] 卢琳, 李晓刚, 高瑾. 有机涂层/金属界面腐蚀的微区电化学[J]. 化学进展, 2011, 23(8): 1618-1626.
[13] 罗丽珠, 赖新春, 汪小琳. 我国铀表面科学研究进展[J]. 化学进展, 2011, 23(7): 1322-1328.
[14] 丁玲 何天稀 熊云 吴家峰 陈立功 陈国需. 离子液体作为新型润滑材料的研究进展*[J]. 化学进展, 2010, 22(0203): 298-308.
[15] 薛群基 张俊彦. 润滑材料摩擦化学*[J]. 化学进展, 2009, 21(11): 2445-2457.