English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1774-1787 DOI: 10.7536/PC160729 前一篇   后一篇

• 综述与评论 •

功能化超疏水材料的研究与发展

屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣   

  1. 西安科技大学化学与化工学院 西安 710054
  • 收稿日期:2016-07-01 修回日期:2016-11-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 屈孟男,e-mail:mnanqu@gmail.com;何金梅,e-mail:jinmhe@gmail.com E-mail:mnanqu@gmail.com;jinmhe@gmail.com
  • 基金资助:
    国家自然科学基金项目(No.21473132,21373158)和陕西省科技厅项目(No.2014JM2047,2013KJXX-41)资助

Research and Development of Functional Superhydrophobic Materials

Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2016-07-01 Revised:2016-11-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21473132, 21373158) and the Shaanxi Science and Technology Department(No. 2014JM2047, 2013KJXX-41).
超疏水材料由于其独特的自清洁性能在日常生活和工业领域中有着广泛的应用前景。目前,随着单一功能化超疏水材料研究的成熟,超疏水材料性能的多样性,如透明性、耐磨耐久性、润湿性转换等,在基础研究和实际应用中受到了广泛的关注。透明超疏水涂层除了具备一般超疏水涂层的性能外还具有良好的透光性;而提高超疏水材料的耐磨耐久性在实际应用中具有极为重要的意义;润湿性转换则扩展了超疏水表面在油水分离等方面的应用。虽然已有较多关于超疏水材料的研究,但仍然无法满足人们对超疏水表面功能性的需求,因此研究功能化超疏水涂层具有更加深远的意义。本文综述了超疏水材料在透明性,耐磨耐久性,润湿性转换以及混合物分离等方面的研究进展,并展望了超疏水材料领域未来的研究热点和发展方向。
Superhydrophobic materials have extensive application prospects in our daily life and industrial fields due to their unique self-cleaning characteristic. At present, the diversity of superhydrophobic materials properties has attracted more attention in basic research and practical application with the maturity on the research of single functional superhydrophobic materials, such as transparency, wear durability and wettability conversion, etc. Transparent superhydrophobic coatings possess good transparency, besides the general performance of the superhydrophobic coatings; enhance the wear resistance of superhydrophobic materials has a very important significance in practical application; and the wettability conversion can extend the application of superhydrophobic surfaces in oil-water separation and other aspects. The research of superhydrophobic materials is plentiful, but it still can not meet the demand for superhydrophobic surface functionality. Therefore, it's always worth researching on the superhydrophobic coating with functionalization. Herein, we review the research progress of the transparency, wear durability, wettability switch, separation of mixture and other aspects on superhydrophobic materials. The future research focus and development direction about superhydrophobic materials fields are pointed out.

Contents
1 Introduction
2 Transparent superhydrophobic surfaces
2.1 The research of transparent superhydrophobic materials
2.2 Control for the transparence of superhydrophobic surface
3 Wear resistance and durability of superhydrophobic surfaces
3.1 Test methods for wear resistance and durability of superhydrophobic surface
3.2 The way to improve the wear resistance and durability of superhydrophobic surface
4 Separation of mixture
4.1 Oil-water separation
4.2 Membrane distilation
4.3 Drug release
5 Wettability transformation of superhydrophobic surfaces
5.1 Single factor stimuli-responsive surfaces
5.2 Multifactors responsive switchable surfaces
6 Research of other functional superhydrophobic surfaces
7 Existing problems
8 Outlook

中图分类号: 

()
[1] Wang L M, Peng B, Su Z H. Langmuir, 2010, 26(14):12203.
[2] Pirie B J S, Gregory D W. J. Chem. Edu., 1973, 50(10):682.
[3] Sun T L, Feng L, Gao X F, Jiang L. Acc. Chem. Res., 2005, 38(8):644.
[4] Gentleman M M, Ruud J A. Langmuir, 2010, 26(3):1408.
[5] Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z Q, Jiang L, Li X Y. J. Am. Chem. Soc., 2004, 126(10):3064.
[6] Cao M Y, Guo D W, Yu C M, Li K, Liu M J, Jiang L. ACS Appl. Mater. Inter., 2016, 8(6):3615.
[7] Yamamoto M, Nishikawa N, Mayama H, Nonomura Y, Yokojima S, Nakamura S, Uchida K. Langmuir, 2015, 31(26):7355.
[8] Shi X D, Dou R M, Ma T Z, Liu W Y, Lu X H, Shea K J, Song Y L, Jiang L. ACS Appl. Mater. Inter., 2015, 7(33):18424.
[9] 刘双平(Liu S P), 俞熹(Yu X). 大学物理(College Physics), 2011, 30(9):50.
[10] Janout V, Myers S B, Register R A, Regen S L. J. Am. Chem. Soc., 2007, 129(17):5756.
[11] Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U. Nano Lett., 2013, 13(11):5329.
[12] Zhao H, Law K Y. Langmuir, 2012, 28(32):11812.
[13] Shi E Z, Li H B, Yang L, Zhang L H, Li Z, Li P X, Shang Y Y, Wu S T, Li X M, Wei J Q, Wang K L, Zhu H W, Wu D H, Fang Y, Cao A Y. Nano. Lett., 2013, 13(4):1776.
[14] Ellerbee A K, Phillips S T, Siegel A C, Miricia K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20):8447.
[15] Lee J, Jha A K, Bose A, Tripathi A. Langmuir, 2008, 24(22):12738.
[16] Xi B J, Verma L K, Li J, Bhatia C S, Danner A J, Yang H, Zeng H C. ACS Appl. Mater. Inter., 2012, 4(2):1093.
[17] Marmur A. Langmuir, 2004, 20(9):3517.
[18] Yang Y, Deng Y H, Tong Z, Wang C Y. ACS Sustainable Chem. Eng., 2014, 2(7):1729.
[19] Nyström D, Lindqvist J, Östmark E, Antoni P, Carlmark A, Hult A, Malmström E. ACS Appl. Mater. Inter., 2009, 1(4):816.
[20] 陈钰(Chen Y), 徐建生(Xu J S), 郭志光(Guo Z G). 化学进展(Progress in Chemistry), 2012, 24(5):696.
[21] 杨卧龙(Yang W L), 纪献兵(Ji X B), 徐进良(Xu J L). 化学进展(Progress in Chemistry), 2016, 28(6):763.
[22] Ren G N, Zhang Z Z, Zhu X T, Ge B, Wang K, Xu X H, Men X H, Zhou X Y. Appl. Phys. A, 2014, 114(4):1129.
[23] Barthwal S, Lim S H. Applied Surface Science, 2015, 328:296.
[24] Lu Y, Song J L, Liu X, Xu W J, Xing Y J, Wei Z F. ACS Sustainable Chem. Eng., 2013, 1(1):102.
[25] Chen H W, Zhang P F, Zhang L W, Liu H L, Jiang Y, Zhang D Y, Han Z W, Jiang L. Nature, 2016, 532:85.
[26] Chen Q, Wang M R, Pan N, Guo Z Y. Energy Fuels, 2009, 23(9):4470.
[27] 徐文华(Xu W H), 张丽东(Zhang L D), 赵利(Zhao L), 陈寿花(Chen S H), 王丽(Wang L), 刘伟良(Liu W L). 化工进展(Chemical Industry and Engineering Progress), 2012, 31(10):2260.
[28] 黄二梅(Huang E M), 皮丕辉(Pi P H), 郑大锋(Zheng D F), 文秀芳(Wen X F), 杨卓如(Yang Z R). 化工新型材料(New Chemical Materials), 2010, 38(3):1.
[29] Su C H, Li J, Geng H B, Wang Q J, Chen Q M. Applied Surface Science, 2006, 253(5):2633.
[30] Yu S, Guo Z G, Liu W M.Chem. Commun., 2015, 51:1775.
[31] Huang C Z, Chen S F. J. Phys. Chem. B, 2008, 112(37):11785.
[32] 王峥(Wang Z), 徐平(Xu P), 王文文(Wang W W), Tabulcau J. 物理实验(Physics Experimentation), 2010, 30(7):27.
[33] Kim T H, Ha S H, Jang N S, Kim J, Kim J H, Park J K, Lee D W, Lee J, Kim S H, Kim J M. ACS Appl. Mater. Inter., 2015, 7(9):5289.
[34] Wong J X H, Yu H Z. J. Chem. Educ., 2013, 90(9):1203.
[35] Bravo J, Zhai L, Wu Z Z, Cohen R E, Rubner M F. Langmuir, 2007, 23(13):7293.
[36] Yang S Y, Wang L F, Wang C F, Chen L, Chen S. Langmuir, 2010, 26(23):18454.
[37] Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Langmuir, 2009, 25(5):3260.
[38] Xi Y, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nature Materials, 2013, 12(6):529.
[39] Chen L Q, Geissler A, Bonaccurso E, Zhang K. ACS Appl. Mater. Inter., 2014, 6(9):6969.
[40] Mundo R D, Palumbo F, Agostino R. Langmuir, 2008, 24(9):5044.
[41] Karunakaran R G, Lu C H, Zhang Z H, Yang S. Langmuir, 2011, 27(8):4594.
[42] Wang L M, McCarthy T J. Angew. Chem. Int. Ed., 2016, 55:244.
[43] Yanagisawa T, Nakajima A, Sakai M, Kameshima Y, Okada K. Elsevier Materials Science and Engineering B, 2009, 161:36.
[44] Cao L L, Gao D. RSC Faraday Discuss, 2010, 146:57.
[45] 刘朝阳(Liu Z Y), 程璇(Cheng X). 功能材料(Journal of Functional Materials), 2013, 44(6):870.
[46] Li Y, Men X H, Zhu X T, Ge B, Chu F J, Zhang Z Z. J. Mater. Sci., 2016, 51(5):2411.
[47] Tian X L, Verho T, Ras R H A. Science, 2016, 352(6282):142.
[48] Xu L G, Geng Z, He J H, Zhou G. ACS Appl. Mater. Inter., 2014, 6(12):9029.
[49] Groten J, Rühe J. Langmuir, 2013, 29(11):3765.
[50] Su F H, Yao K. ACS Appl. Mater. Inter., 2014, 6(11):8762.
[51] Yokoi N, Manabe K, Tenjimbayashi M, Shiratori S. ACS Appl. Mater. Inter., 2015, 7(8):4809.
[52] Boinovich L, Emelyanenko A M, Pashinin A S. ACS Appl. Mater. Inter., 2010, 2(6):1754.
[53] Liu X J, Xu Y, Ben K Y, Chen Z, Wang Y, Guan Z S. Applied Surface Science, 2015, 339:94.
[54] Liu S H, Liu X J, Latthe S S, Gao L, An S, Yoon S S, Liu B S, Xing R. Applied Surface Science, 2015, 351:897.
[55] Qian Y J, Chi L N, Zhou W L, Yu Z J, Zhang Z Z, Zhang Z J, Jiang Z. Applied Surface Science, 2016, 360:749.
[56] Wang H X, Zhou H, Gestos A, Fang J, Lin T. ACS Appl. Mater. Inter., 2013, 5(20):10221.
[57] Zhu T, Cai C, Duan C T, Zhai S, Liang S M, Jin Y, Zhao N, Xu J. ACS Appl. Mater. Inter., 2015, 7(25):13996.
[58] Zhou X Y, Zhang Z Z, Xu X H, Guo F, Zhu X T, Men X H, Ge B. ACS Appl. Mater. Inter., 2013, 5(15):7208.
[59] Xue C H, Li Y R, Zhang P, Ma J Z, Jia S T. ACS Appl. Mater. Inter., 2014, 6(13):10153.
[60] Abbas R, Khereby M A, Sadik W A, EI Demerdash A G M. Cellulose, 2015, 22:887.
[61] Yuan R X, Wu S Q, Yu P, Wang B H, Mu L W, Zhang X G, Zhu Y X, Wang B, Wang H Y, Zhu J H. ACS Appl. Mater. Inter., 2016, 8(19):12481.
[62] Wang Z X, Hou D Y, Lin S H. Environ. Sci. Technol., 2016, 50(7):3866.
[63] Hou Y, Wang Z, Guo J, Shen H, Zhang H, Zhao N, Zhao Y P, Chen L, Liang S M, Jin Y, Xu J. J. Mater. Chem. A, 2015, 3:23252.
[64] Chen B Y, Qiu J H, Sakai E, Kanazawa N, Liang R L, Feng H X. ACS Appl. Mater. Inter., 2016, 8(27):17659.
[65] Liu X J, Ge L, Li W, Wang X Z, Li F. ACS Appl. Mater. Inter., 2015, 7(1):791.
[66] Ge B, Men X H, Zhu X T, Zhang Z Z. J. Mater. Sci., 2015, 50(6):2365.
[67] Gondal M A, Sadullah M S, Dastageer M A, Mckinley G H, Panchanathan D, Varanasi K K. ACS Appl. Mater. Inter., 2014, 6(16):13422.
[68] Yong J L, Chen F, Yang Q, Biao H, Du G Q, Shan C, Huo J L, Fang Y, Hou X. Adv. Mater. Inter., 2016, 3(7):1500650.
[69] Yuan T, Meng J Q, Hao T Y, Wang Z H, Zhang Y F. ACS Appl. Mater. Inter., 2015, 7(27):14896.
[70] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Zhang N Q, Sun K N. ACS Appl. Mater. Inter., 2013, 5(21):11363.
[71] Kwak M J, Oh M S, Yoo Y, You J B, Kim J, Yu S J, Im S G. Chem. Mater., 2015, 27(9):3441.
[72] Li K, Ju J, Xue Z X, Ma J, Feng L, Gao S, Jiang L. Nature Communication, 2013, 4(4):2276.
[73] Lee J, Boo C, Ryu W H, Taylor A D, Elimelech M. ACS Appl. Mater. Inter., 2016, 8(17):11154.
[74] Kujawa J, Cerneaux S, Koter S, Kujawski W. ACS Appl. Mater. Inter., 2014, 6(16):14223.
[75] Vivek R, Thangam R, Kumar S R, Rejeeth C, Sivasubramanian S, Vincent S, Gopi D, Kannan S. ACS Appl. Mater. Inter., 2016, 8(3):2262.
[76] Mele E, Bayer I S, Nanni G, Heredia Guerrero J A, Ruffilli R, Ayadi F, Marini L, Cingolani R, Athanassiou A. Langmuir, 2014, 30(10):2896.
[77] Yabu H, Hirai Y, Kojima M, Shimomura M. Chem. Mater., 2009, 21(9):1787.
[78] Konosu Y, Matsumoto H, Tsuboi K, Minagawa M, Tanioka A. Langmuir, 2011, 27(24):14716.
[79] Ou R W, Wei J, Jiang L, Simon G P, Wang H T. Environ. Sci. Technol., 2016, 50(2):906.
[80] Lim H S, Han J T, Kwak D, Jin M H, Cho K. J. Am. Chem. Soc., 2006, 128(45):14458.
[81] Uyama A, Yamazoe S, Shigematsu S, Morimoto M, Yokojima S, Mayama H, Kojima Y, Nakamura S, Uchida K. Langmuir, 2011, 27(10):6395.
[82] Yin Y J, Guo N, Wang C X, Rao Q Q. Ind. Eng. Chem. Res., 2014, 53(37):14322.
[83] Jiang Y G, Wang Z Q, Yu X, Shi F, Xu H P, Zhang X. Langmuir, 2005, 21(5):1986.
[84] 蒋玉贵(Jiang Y G), 万鹏博(Wan P B), 王治强(Wang Z Q), 张希(Zhang X). 超分子组装与软物质材料(Supramolecular Assembly and Soft material). 中国化学会第26届学术年会论文集(Proceeding of the 26th Annual Meeting of Chinese Chemical Society), 2008. 54.
[85] Yuan W F, Jiang G Y, Wang J X, Wang G J, Song Y L, Jiang L. Macromolecules, 2006, 39(3):1300.
[86] Guo Y, Xia F, Xu L, Li J, Yang W S, Jiang L. Langmuir, 2010, 26(2):1024.
[87] Deng X, Mammen L, Butt H J, Vollmer D. Science, 2012, 335(6064):67.
[88] Sun H, Chen D Y, Wang D Q, Sanchez Soto M, Schiraldi D A. ACS Appl. Mater. Inter., 2016, 8(20):13051.
[89] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347(6226):1132.
[90] Guo J, Yang F C, Guo Z G. Journal of Colloid and Interface Science, 2016, 466:36.
[91] Feng C F, Yi Z F, She F H, Gao W M, Peng Z, Garvey C J, Dumée L F, Kong L X. ACS Appl. Mater. Inter., 2016, 8(15):9977.
[92] Xu L Y, Zhu D D, Lu X M, Lu Q H. RSC J. Mater. Chem. A, 2015, 3:3801.
[93] Flores Vivian I, Hejazi V, Kozhukhova M I., Nosonovsky M, Sobolev K. ACS Appl. Mater. Inter., 2013, 5(24):13284.
[94] Liu J, Guo H Y, Zhang B, Qiao S S, Shao M Z, Zhang X R, Feng X Q, Li Q Y, Song Y L, Jiang L, Wang J J. Angew. Chem. Int. Ed., 2016, 55:1.
[95] Hwang I, Jeong I, Lee J, Ko M J, Yong K. ACS Appl. Mater. Inter., 2015, 7(31):17330.
[96] Li H, Qu M N, Sun Z, He J M, Zhou A N. Journal of Nanomaterials, 2013, 497216:1.
[97] Qu M N, Liu S S, He J M, Feng J, Yao Y L, Hou L G, Ma X R. J. Mater. Sci., 2016, 51(18):8718.
[98] Qu M N, Liu S S, He J M, Feng J, Yao Y L, Hou L G, Ma X R, Liu X R. RSC Adv., 2016, 6:79238.
[99] Si Y F, Guo Z G. RSC Nanoscale, 2015, 7:5922.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[3] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[4] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[5] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[6] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[7] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[8] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[9] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[10] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[11] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[12] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[13] 陈钰, 徐建生, 郭志光. 仿生超疏水性表面的最新应用研究[J]. 化学进展, 2012, 24(05): 696-708.
[14] 斯芳芳, 张靓, 赵宁, 陈莉, 徐坚. 超亲水表面制备方法及其应用[J]. 化学进展, 2011, 23(9): 1831-1840.
[15] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
阅读次数
全文


摘要

功能化超疏水材料的研究与发展