English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1524-1533 DOI: 10.7536/PC180703 前一篇   后一篇

• 综述 •

金属配合物用于细胞内动态实时荧光示踪研究

邱康强1,2, 朱宏翊1, 计亮年1, 巢晖1*   

  1. 1. 中山大学化学学院 广州 510275;
    2. 深圳大学化学与环境工程学院 深圳 518055
  • 收稿日期:2018-07-04 修回日期:2018-08-07 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 巢晖 E-mail:ceschh@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21525105,21471164,21778079),国家重点基础研究发展计划(973)项目(No.2015CB856301)和中国博士后科学基金项目(No.2018M630988)资助

Real-Time Luminescence Tracking in Living Cells with Metal Complexes

Kangqiang Qiu1,2, Hongyi Zhu1, Liangnian Ji1, Hui Chao1*   

  1. 1. School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
    2. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
  • Received:2018-07-04 Revised:2018-08-07 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21525105, 21471164, 21778079), the State Key Development Program for Basic Research of China(973)(No. 2015CB856301), and the China Postdoctoral Science Foundation(No. 2018M630988).
近年来金属配合物因其优异的光物理性质,如大的斯托克位移、好的光稳定性、长的荧光寿命以及双光子荧光性质等,在生物成像领域中引起了广泛关注,并被应用于细胞内动态变化的实时示踪研究。本文综述了近年来金属配合物对线粒体、溶酶体、脂滴、乏氧、pH、黏度、温度、极性等细胞内动态行为和演化过程的实时示踪研究。总结了金属配合物应用于细胞内动态实时示踪所需的条件,包括特异性、好的光稳定性和低细胞毒;同时结合金属配合物的光物理性质,对实时示踪过程中不同成像模式(单光子成像、多光子成像、荧光寿命成像)的优缺点进行了比较;最后,针对目前金属配合物荧光示踪应用中存在的一些问题,进行了分析和探讨。
Metal complexes possess outstanding photophysical properties, such as large Stokes shifts, good photostability, long luminescent lifetimes, two-photon luminescent properties and so on. During the past years, metal complexes have attracted intensive research interest in biological imaging for their excellent properties. Moreover, they also have been applied for real-time tracking the cellular dynamics during a series of biological events. In this review, the essential requirements of the metal complexes for cellular dynamic real-time tracking are summarized. The specificity, the good photostability and the low cytotoxicity of metal complexes are the key factors for real-time tracking. According to the optical properties, the imaging modes (single photon imaging, multiphoton imaging, luminescence lifetime imaging) of the metal complexes for real-time tracking are outlined. Furthermore, the advantages and disadvantages of the imaging modes during cellular real-time dynamic tracking are compared. As for the objects of real-time tracking, the article focuses on the organelles and the microenvironment factors. The real-time dynamic tracking of organelles (mitochondria, lysosomes, lipid droplets) and microenvironment factors (hypoxia, pH, viscosity, temperature, polarity) are detailed overviewed and systemized the related research directions. In the end, some existing problems and the challenges of the metal complexes during real-time tracking are presented and discussed.
Contents
1 Introduction
2 The essential requirements of real-time tracking probes
3 The imaging modes of transition metal complexes
4 Cellular dynamics tracking
4.1 Tracking the dynamics of organelles
4.2 Tracking the dynamics of microenvironment factors
5 Conclusion and outlook

中图分类号: 

()
[1] Satori C P, Henderson M M, Krautkramer E A, Kostal V, Distefano M D, Arriaga E A. Chem. Rev., 2013, 113:2733.
[2] Tofaris G K. Mov. Disord., 2012, 27:1364.
[3] Bitensky L, Chayen J, Cunningham G J, Fine J. Nature, 1963, 199:493.
[4] Mohamed M M, Sloane B F. Nat. Rev. Cancer, 2006, 6:764.
[5] Balut C, vandeVen M, Despa S, Lambrichts I, Ameloot M, Steels P, Smets I. Kidney Int., 2008, 73:226.
[6] Rosenberg B, VanCamp L, Trosko J E, Mansour V H. Nature, 1969, 222:385.
[7] Poynton F E, Bright S A, Blasco S, Williams D C, Kelly J M, Gunnlaugsson T. Chem. Soc. Rev., 2017, 46:7706.
[8] Caporale C, Massi M. Coord. Chem. Rev., 2018, 363:71.
[9] Zamora A, Vigueras G, Rodriguez V, Santana M D, Ruiz J. Coord. Chem. Rev., 2018, 360:34.
[10] You Y. J. Chin. Chem. Soc., 2018, 65:352.
[11] Notaro A, Gasser G. Chem. Soc. Rev., 2017, 46:7317.
[12] Patra M, Gasser G. Nat. Rev. Chem., 2017, 1:0066.
[13] Hostachy S, Policar C, Delsuc N. Coord. Chem. Rev., 2017, 351:172.
[14] Cao Q, Li Y, Freisinger E, Qin Z P, Sigel R K O, Mao Z W. Inorg. Chem. Front., 2017, 4:10.
[15] Zhao Q, Huang C, Li F. Chem. Soc. Rev., 2011, 40:2508.
[16] You Y, Nam W. Chem. Soc. Rev., 2012, 41:7061.
[17] Zeng L, Gupta P, Chen Y, Wang E, Ji L N, Chao H, Chen Z S. Chem. Soc. Rev., 2017, 46:5771.
[18] You Y. Curr. Opin. Chem. Biol., 2013, 17:699.
[19] Ma D L, Lin S, Wang W, Yang C, Leung C H. Chem. Sci., 2017, 8:878.
[20] Kumar N, Bhalla V, Kumar M. Coord. Chem. Rev., 2013, 257:2335.
[21] Tobita S, Yoshihara T. Curr. Opin. Chem. Biol., 2016, 33:39.
[22] 张晨(Zhang C), 关瑞麟(Guan R L), 陈禹(Chen Y), 计亮年(Ji L N), 巢晖(Chao H). 药学进展(Prog. Pharm. Sci.), 2017, 41:17.
[23] Chen Y, Guan R L, Zhang C, Huang J, Ji L N, Chao H. Coord. Chem. Rev., 2016, 310:16.
[24] Zhang K Y, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem. Rev., 2018, 118:1770.
[25] Ridley A J, Schwartz M A, Burridge K, Firtel R A, Ginsberg M H, Borisy G, Parsons J T, Horwitz A R. Science, 2003, 302:1704.
[26] Reed J C. Cancer Cell, 2003, 3:17.
[27] Cotter T G. Nat. Rev. Cancer, 2009, 9:501.
[28] Bendris N, Lemmers B, Blanchard J M. Cell Cycle, 2015, 14:1786.
[29] Chen J J, Jing J, Chang H, Rong Y, Hai Y, Tang J, Zhang J L, Xu P. Autophagy, 2013, 9:894.
[30] Ow Y P, Green D R, Hao Z, Mak T W. Nat. Rev. Mol. Cell Biol., 2008, 9:532.
[31] Guicciardi M E, Leist M, Gores G J. Oncogene, 2004, 23:2881.
[32] Papkovsky D B, Dmitriev R I. Chem. Soc. Rev., 2013, 42:8700.
[33] Xu W, Zeng Z, Jiang J H, Chang Y T, Yuan L. Angew. Chem. Int. Ed., 2016, 55:13658.
[34] Qiu K Q, Chen Y, Rees T W, Ji L N, Chao H. Coord. Chem. Rev., 2017, DOI:10.1016/j.ccr.2017.10.022.
[35] Wallace D C. Nat. Rev. Cancer, 2012, 12:685.
[36] Gutterman, D D. Circ. Res., 2005, 97:302.
[37] Green D R, Reed J C. Science, 1998, 281:1309.
[38] Vandecasteele G, Szabadkai G, Rizzuto R. IUBMB Life, 2001, 52:213.
[39] Westerman B. Nat. Rev. Mol. Cell Bio., 2010, 11:872.
[40] Komatsu H, Shindo Y, Oka K, Hill J P, Ariga K. Angew. Chem. Int. Ed., 2014, 53:3993.
[41] Korobova F, Ramabhadran V, Higgs H N. Science, 2013, 339:464.
[42] Huang H, Zhang P, Qiu K Q, Huang J, Chen Y, Ji L N, Chao H. Sci. Rep., 2016, 6:20887.
[43] Huang H, Yang L, Zhang P, Qiu K Q, Huang J, Chen Y, Diao J, Liu J, Ji L N, Long J, Chao H. Biomaterials, 2016, 83:321.
[44] Chen Y, Rees T W, Ji L N, Chao H. Curr. Opin. Chem. Biol., 2018, 43:51.
[45] Nishikawa T, Edelstein D, Du X L, Yamagishi S, Matsumura T, Kaneda Y, Yorek M A, Beebe D, Oates P J, Hammes H P, Giardino I, Brownlee M. Nature, 2000, 404:787.
[46] Chen Y, Qiao L, Ji L N, Chao H. Biomaterials, 2014, 35:2.
[47] Chen Y, Qiao L, Yu B, Li G, Liu C, Ji L N, Chao H. Chem. Commun., 2013, 49:11095.
[48] Qiu K Q, Huang H, Liu B, Liu Y, Zhang P, Chen Y, Ji L N, Chao H. J. Mater. Chem. B, 2015, 3:6690.
[49] Dolman N J, Chambers K M, Mandavilli B, Batchelor R H, Janes M S. Autophagy, 2013, 9:1653.
[50] Wang K, Klionsky D J. Autophagy, 2011, 7:297.
[51] Jin C, Liu J, Chen Y, Guan R, Ouyang C, Zhu Y, Ji L N, Chao H. Sci. Rep., 2016, 6:22039.
[52] Chen M H, Wang F X, Cao J J, Tan C P, Ji L N, Mao Z W. ACS Appl. Mater. Interfaces, 2017, 9:13304.
[53] Luzio J P, Pryor P R, Bright N A. Nat. Rev. Mol. Cell Biol., 2007, 8:622.
[54] Saftig P, Klumperman J. Nat. Rev. Mol. Cell Biol., 2009, 10:623.
[55] Perrot R, Julien J P. FASEB J., 2009, 23:3213.
[56] Millecamps S, Julien J P. Nat. Rev. Neurosci., 2013, 14:161.
[57] Ho Y M, Au N P B, Wong K L, Chan C T L, Kwok W M, Law G L, Tang K K, Wong W Y, Ma C H E, Lam M H W. Chem. Commun., 2014, 50:4161.
[58] Qiu K Q, Huang H, Liu B, Liu Y, Huang Z, Chen Yu, Ji L N, Chao H. ACS Appl. Mater. Interfaces, 2016, 8:12702.
[59] Mizushima N, Levine B. Nat. Cell Biol., 2010, 12:823.
[60] White E. Nat. Rev. Cancer, 2012, 12:401.
[61] Mizushima N. Genes Dev., 2007, 21:2861.
[62] He L, Tan C P, Ye R R, Zhao Y Z, Liu Y H, Zhao Q, Ji L N, Mao Z W. Angew. Chem. Int. Ed., 2014, 53:12137.
[63] Martin S, Parton R G. Nat. Rev. Mol. Cell Biol., 2006, 7:373.
[64] Farese R V, Walther T C. Cell, 2009, 139:855.
[65] Guo Y, Cordes K R, Farese R V, Walther T C. J. Cell Biol., 2009, 122:749.
[66] Walther T C, Farese R V. Annu. Rev. Biochem., 2012, 81:687.
[67] Cohen J C, Horton J D, Hobbs H H. Science, 2011, 332:1519.
[68] Bader C A, Brooks R D, Ng Y S, Sorvina A, Werrett M V, Wright P J, Anwer A G, Brooks D A, Stagni S, Muzzioli S, Silberstein M, Skelton B W, Goldys E M, Plush S E, Shandala T, Massi M. RSC Adv., 2014, 4:16345.
[69] Koshel E I, Chelushkin P S, Melnikov A S, Serdobintsev P Y, Stolbovaia A Y, Saifitdinova A F, Shcheslavskiy V I, Chernyavskiy O, Gaginskaya E R, Koshevoy I O, Tunik S P. J. Photoch. Photobio. A, 2017, 332:122.
[70] Tang J, Zhang Y, Yin H Y, Xu G, Zhang J L. Chem. Asian J., 2017, 12:2533.
[71] He L, Cao J J, Zhang D Y, Hao L, Zhang M F, Tan C P, Ji L N, Mao Z W. Sensor Actuat. B-Chem., 2018, 262:313.
[72] 王可(Wang K), 马会民(Ma H M). 化学进展(Progress in Chemistry), 2010, 22:1633.
[73] Monti M, Brandt L, Ikomi-Kumm J, Olsson H. Scand. J. Haematol., 1986, 36:353.
[74] Karnebogen M, Singer D, Kallerhoff M, Ringert R H. Thermochim. Acta, 1993, 229:147.
[75] Acker T, Acker H. J. Exp. Biol., 2004, 207:3171.
[76] Aragonés J, Fraisl P, Baes M, Carmeliet P. Cell MeTab., 2009, 9:11.
[77] Lenaz G, Genova M L. Int. J. Biochem. Cell Biol., 2009, 41:1750.
[78] Brahimi-Horn C, Berra E, Pouysségur J. Trends Cell Biol., 2001, 11:S32.
[79] Braun R D, Lanzen J L, Dewhirst M W. Am. J. Physiol., 1999, 277:H551.
[80] Anada T, Fukuda J, Sai Y, Suzuki O. Biomaterials, 2012, 33:8430.
[81] Solaini G, Baracca A, Lenaz G, Sgarbi G. Biochim. Biophys. Acta, 2010, 1797:1171.
[82] Huang T, Tong X, Yu Q, Yang H, Guo S, Liu S, Zhao Q, Zhang K Y, Huang W. J. Mater. Chem. C, 2016, 4:10638.
[83] Liu S, Liang H, Zhang K Y, Zhao Q, Zhou X, Xu W, Huang W. Chem. Commun., 2015, 51:7943.
[84] Li X, Tong X, Yan H, Lu C, Zhao Q, Huang W. Chem. Eur. J., 2016, 22:17282.
[85] Yoshihara T, Murayama S, Tobita S. Sensor, 2015, 15:13503.
[86] Son A, Kawasaki A, Hara D, Ito T, Tanabe K. Chem. Eur. J., 2015, 21:2527.
[87] Zhang P, Huang H, Chen Y, Wang J, Ji L N, Chao H. Biomaterials, 2015, 53:522.
[88] Sun L, Chen Y, Kuang S, Li G, Guan R, Liu J, Ji L N, Chao H. Chem. Eur. J., 2016, 22:8955.
[89] Casey J R, Grinstein S, Orlowski J. Nat. Rev. Mol. Cell Biol., 2010, 11:50.
[90] Liu J X, Diwu Z, Leung W Y. Bioorg. Med. Chem. Lett., 2001, 11:2903.
[91] Russell D A, Pottier R H, Valenzeno D P. Photochem. Photobiol., 1994, 59:309.
[92] Ma Y, Liang H, Zeng Y, Yang H, Ho C L, Xu W, Zhao Q, Huang W, Wong W Y. Chem. Sci., 2016, 7:3338.
[93] Yu H J, Hao Z, Peng H, Rao R, Sun M, Ross A W, Ran C, Chao H, Yu L. Sensors Actuat. B-Chem., 2017, 252:313.
[94] Qiu K Q, Ke L, Zhang X, Liu Y, Rees T W, Ji L N, Diao J, Chao H. Chem. Commun., 2018, 54:2421.
[95] Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts C, LeRoith D, Zick Y. Biochem. J., 1994, 298:443.
[96] Singer S J, Nicolson G L. Science, 1972, 175:720.
[97] Yang Z, Cao J, He Y, Yang J H, Kim T, Peng X, Kim J S. Chem. Soc. Rev., 2014, 43:4563.
[98] Kuimova M K, Botchway S W, Parker A W, Balaz M, Collins H A, Anderson H L, Suhling K, Ogilby P R. Nat. Chem., 2009, 1:69.
[99] Bui A T, Grichine A, Duperray A, Lidon P, Riobe F, Andraud C, Maury O. J. Am. Chem. Soc., 2017, 139:7693.
[100] Yin H, Tang J, Zhang J L. Sci. Chi. Chem., 2017, 47:267.
[101] Liu F, Wen J, Chen S S, Sun S G. Chem. Commun., 2018, 54:1371.
[102] Drubin D G, Nelson W J. Cell, 1996, 84:335.
[103] Zhuang Y D, Chiang P Y, Wang C W, Tan K T. Angew. Chem. Int. Ed., 2013, 52:8124.
[104] Huang L, Tam-Chang S W. J. Fluoresc., 2011, 21:213.
[105] Jiang N, Fan J, Xu F, Peng X, Mu H, Wang J, Xiong X. Angew. Chem. Int. Ed., 2015, 54:2510.
[106] Li X, Tong X, Yin Y, Yan H, Lu C, Huang W, Zhao Q. Chem. Sci., 2017, 8:5930.
[107] Wang X, Wolfbeis O S, Meier R J. Chem. Soc. Rev., 2013, 42:7834.
[108] Qiao J, Mu X, Qi L. Biosens. Bioelectron., 2016, 85:403.
[109] Sakaguchi R, Kiyonaka S, Mori Y. Curr. Opin. Biotech., 2015, 31:57.
[110] Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. Nature, 2004, 430:748.
[111] Zhang H, Jiang J, Gao P, Yang T, Zhang K Y, Chen Z, Liu S, Huang W, Zhao Q. ACS Appl. Mater. Interfaces, 2018, 10:17542.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[8] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[9] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[10] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[11] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[12] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[13] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[14] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[15] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.