English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 502-512 DOI: 10.7536/PC170350 前一篇   后一篇

• 综述 •

联合递送药物和基因的智能抗癌控释体系

周帅, 陈未, 肖自林, 叶盛, 丁晨迪, 傅佳骏*   

  1. 南京理工大学化工学院 南京 210094
  • 收稿日期:2017-03-31 修回日期:2017-04-17 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 傅佳骏 E-mail:fujiajun668@gmail.com
  • 基金资助:
    国家自然科学基金项目(No.51672133)和江苏省自然科学基金项目(No.BK20161496)资助

Smart Drug and Gene Co-Delivery System for Cancer Therapy

Shuai Zhou, Wei Chen, Zilin Xiao, Sheng Ye, Chendi Ding, Jiajun Fu*   

  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2017-03-31 Revised:2017-04-17 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51672133) and the Natural Science Foundation of Jiangsu Province (No.BK20161496).
癌症是严重威胁人类健康和生命的重大疾病之一,目前化疗是临床癌症治疗的主要手段。但是由于癌症发病机制的复杂性和异质性,单一疗法通常无法有效地抑制癌症的发展和转移。因此,包含多种抗癌机制的联合疗法成为越来越重要的治疗策略。凭借其增强抗癌疗效和降低毒副作用的能力,联合递送药物和基因的纳米载体已经成为生物医药领域的研究热点。本文综述了联合递送药物和基因的智能抗癌控释载体的最新研究进展,分类介绍了这些联合递送载体的制备方法和作用机制,它们可在肿瘤微环境的刺激因素(如pH、谷胱甘肽和酶等)或者外源性刺激(如温度、超声等)作用下发生结构或构象的变化,从而实现了药物和基因的可控释放,产生协同治疗作用。此外,本文还对联合递送载体的发展前景作了展望。
Cancer is one of the major diseases seriously threating human health. Chemotherapy plays a crucial role in clinical cancer treatment at present. However, due to the complexity of cancer pathogenesis mechanism and heterogeneity, single drug therapy usually can't afford to effectively suppress cancer progression and migration. Thus, combination therapy involving multiple anticancer mechanisms has been becoming an increasingly important therapeutic strategy in clinical practice. Cancer treatment with nanocarriers which allow for the co-delivery of both drug and gene has been the focus of recent active research in biomedicine field because of their ability to enhance anticancer efficacy and reduce adverse side effects. This article reviews the recent advances on smart drug and gene co-delivery carriers. Various co-delivery carriers are classified on the basis of material type, and the corresponding preparation methods and action mechanisms are introduced respectively in this review. These smart co-delivery carriers will undergo a structural or conformational change upon exposure to intrinsic stimulating factors of tumor microenvironment (e.g. pH, glutathione, enzyme) or exogenous stimuli (e.g. temperature, ultrasound), resulting in the controlled release of both drug and gene to generate synergistic therapeutic effects against cancer. In addition, some personal perspectives on this field are also presented.
Contents
1 Introduction
2 Inorganic nanoparticle-based smart drug and gene co-delivery carriers
2.1 Mesoporous silica nanoparticle-based co-delivery carriers
2.2 Other types of inorganic nanoparticle-based co-delivery carriers
3 Polymer-based smart drug and gene co-delivery carriers
3.1 Polymer composite-based co-delivery carriers
3.2 Polymeric micelle and vesicle-based co-delivery carriers
3.3 Nanogel-based co-delivery carriers
4 Liposome-based smart drug and gene co-delivery carriers
4.1 pH-responsive liposomes
4.2 Thermo-responsive liposomes
4.3 Other stimuli responsive liposomes
5 Conclusion

中图分类号: 

()
[1] Torre L A, Bray F, Siegel R L, Ferlay J, Lortet T J, Jemal A. CA Cancer J. Clin., 2015, 65:87.
[2] Wang F Z, Xing L, Tang Z, Lu J J, Cui P F, Qiao J B, Jiang L, Jiang H L, Zong L. Mol. Pharmaceutics, 2016, 13:1298.
[3] Li Y M, Xu B, Bai T, Liu W G. Biomaterials, 2015, 55:12.
[4] Kim Y D, Park T E, Singh B, Maharjan S, Choi Y J, Choung P H, Arote R B, Cho C S. Nanomedicine, 2015, 10:1165.
[5] Chen Y, Chen H R, Shi J L. Mol. Pharmaceutics, 2014, 11:2495.
[6] Zhao Y, Yu B, Hu H, Hu Y, Zhao N N, Xu F J. ACS Appl. Mater. Interfaces, 2014, 6:17911.
[7] Li F, Zhang Y S, Wang F L, Yang Q, Tan J L, Grifantini R, Wu H, Song C J, Jin B Q. Biomaterials, 2016, 76:399.
[8] Ediriwickrema A, Zhou J B, Deng Y, Saltzman M. Biomaterials, 2014, 35:9343.
[9] Lu Y, Aimetti A A, Langer R, Gu Z. Nat. Rev. Mater., 2016, 1:16075.
[10] Mo R, Gu Z. Mater. Today, 2016, 19:274.
[11] Zheng C F, Zheng M B, Gong P, Deng J Z, Yi H Q, Zhang P F, Zhang Y J, Liu P, Ma Y F, Cai L T. Biomaterials, 2013, 34:3431.
[12] Gaspar V M, Gonçalves C, Melo-Diogo D D, Costa E C, Queiroz J A, Pichon C, Sousa F, Correia I J. J. Controlled Release, 2014, 189:90.
[13] Huang H Y, Kuo W T, Chou M J, Huang Y Y. J. Biomed. Mater. Res., Part A, 2011, 97:330.
[14] Xu B, Xia S, Wang F Z, Jin Q S, Yu T, He L L, Chen Y, Liu Y M, Li S Z, Tan X Y, Ren K, Yao S H, Zeng J, Song X R. Mol. Pharmaceutics, 2016, 13:663.
[15] Kumar V, Mondal G, Slavik P, Rachagani S, Batra S K, Mahato R I. Mol. Pharmaceutics, 2015, 12:1289.
[16] Zhang Q, Shen C N, Zhao N N, Xu F J. Adv. Funct. Mater., 2017, 27:1606229.
[17] Gu Y M, Guo Y Z, Wang C Y, Xu J K, Wu J P, Kirk T B, Ma D, Xue W. Mater. Sci. Eng. C, 2017, 70:572.
[18] Chen L L, Ji F L, Bao Y M, Xia J, Guo L Y, Wang J Y, Li Y C. Mater. Sci. Eng. C, 2017, 70:418.
[19] Nguyen L H, Gao M Y, Lin J Q, Wu W T, Wang J, Chew S Y. Sci. Rep., 2017, 7:42212.
[20] Zhang T S, Ma J, Li C, Lin K, Lou F, Jiang H C, Gao Y Q, Yang Y L, Ming C, Ruan B. Oncol. Rep., 2017, 37:1653.
[21] Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell H H, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg M J, Sloane F B, Johnson J, Gatenby A R, Gillies J R. Cancer Res., 2013, 73:1524.
[22] Mcmahon H T, Boucrot E. Nat. Rev. Mol. Cell Biol., 2011, 12:517.
[23] Mayor S, Pagano R E. Nat. Rev. Mol. Cell Biol., 2007, 8:603.
[24] Meng H, Liong M, Xia T, Li Z X, Ji Z X, Zink J I, Nel A E. ACS Nano, 2010, 4:4539.
[25] Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3:3273.
[26] Meng H, Mai W X, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink J I. ACS Nano, 2013, 7:994.
[27] Ma X, Zhao Y, Ng K W, Zhao Y L. Chem. Eur. J., 2013, 19:15593.
[28] Li T T, Xue S, Yue G, Chen Z Y, Li L, Li S, Hong Y, Wu C H, Zeng H J, Liu Y Y. ACS Appl. Mater. Interfaces, 2016, 8:13748.
[29] Han L, Tang C, Yin C H. Biomaterials, 2015, 60:42.
[30] Zhu C L, Wang X W, Lin Z Z, Xie Z H, Wang X R. J. Food Drug Anal., 2014, 22:18.
[31] Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30:2180.
[32] Zhao N, Lin X, Zhang Q, Ji Z, Xu F J. Small, 2015, 11:6467.
[33] Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V, Zhao Y. Antioxid. Redox Signaling, 2014, 21:707.
[34] Cao C, Zhao S, Yu Q, Liu Y, Zhou Y, Liu J. Nanomedicine:Nanotechnology, Biology and Medicine, 2016, 12:477.
[35] Taratula O, Garbuzenko O B, Chen A M, Minko T. J. Drug Targeting, 2011, 19:900.
[36] Zhu Y F, Meng W J, Gao H, Hanagata N. J. Phys. Chem. C, 2011, 115:13630.
[37] Zhou S W, Du X Z, Cui F B, Zhang X F. Small, 2014, 10:980.
[38] Freeman R, Finder T, Bahshi L, Willner I. Nano Lett., 2009, 9:2073.
[39] Zhao M X, Li J M, Du L, Tan C P, Xia Q, Mao Z W, Ji L N. Chem. Eur. J., 2011, 17:5171.
[40] Li J M, Wang Y Y, Zhao M X, Tan C P, Li Y Q, Le X Y, Ji L N, Mao Z W. Biomaterials, 2012, 33:2780.
[41] Xu J B, Li J M, Lin S, Wu T Y, Huang H Q, Zhang K Y, Sun Y X, Yeung K W K, Li G M, Bian L. Adv. Funct. Mater., 2016, 26:2463.
[42] Jang H J, Min D H. ACS Nano, 2015, 9:2696.
[43] Lülf H, Bertucci A, Septiadi D, Corradini R, De Cola L. Chem. -Eur. J., 2014, 20:10900.
[44] Zhao D, Liu C J, Zhuo R X, Cheng S X. Mol. Pharmaceutics, 2012, 9:2887.
[45] Zhang Y, Schwerbrock N M, Rogers A B, Kim W Y, Huang L. Mol. Ther., 2013, 21:1559.
[46] Chen L, Ding Y, Wang Y, Liu X, Babu R, Ravis W, Yan W. Int. J. Nanomed., 2013, 2013:137.
[47] Guan X W, Li Y H, Jiao Z X, Lin L, Chen J, Guo Z P, Tian H Y, Chen X S. ACS Appl. Mater. Interfaces, 2015, 7:3207.
[48] Kuang Y Y, Jiang X T, Zhang Y, Lu Y F, Ma H J, Guo Y B, Zhang Y J, An S, Li J F, Liu L S, Wu Y H, Liang J Y, Jiang C. Mol. Pharmaceutics, 2016, 13:1599.
[49] Jung H, Kim S A, Lee E, Mok H. Macromol. Res., 2015, 23:449.
[50] Dong D W, Tong S W, Qi X R. J. Biomed. Mater. Res., Part A, 2013, 101:1336.
[51] Wang M F, Liu T X, Han L Q, Gao W W, Yang S M, Zhang N. Polym. Chem., 2015, 6:3324.
[52] Xu C N, Wang P, Zhang J P, Tian H Y, Park K N, Chen X S. Small, 2015, 11:4321.
[53] Lu X, Wang Q Q, Xu F J, Tang G P, Yang W T. Biomaterials, 2011, 32:4849.
[54] Ding X F, Wang W, Wang Y Z, Bao X L, Wang Y, Wang C, Chen J, Zhang F R, Zhou J P. Mol. Pharmaceutics, 2014, 11:3307.
[55] Zhou X Y, Zheng Q Q, Wang C Y, Xu J K, Wu J P, Kirk T B, Ma D, Xue W. ACS Appl. Mater. Interfaces, 2016, 8:12609.
[56] Xu X, Xie K, Zhang X Q, Pridgen E M, Park G Y, Cui D S, Shi J, Wu J, Kantoff P W, Lippard S J, Langer R, Walker G C, Farokhzad O C. Proc. Natl. Acad. Sci., 2013, 110:18638.
[57] Kim C, Shah B P, Subramaniam P, Lee K B. Mol. Pharmaceutics, 2011, 8:1955.
[58] Zhao F, Yin H, Li J. Biomaterials, 2014, 35:1050.
[59] Fan H, Hu Q D, Xu F J, Liang W Q, Tang G P, Yang W T. Biomaterials, 2012, 33:1428.
[60] Li J M, Zhang W, Su H, Wang Y Y, Tan C P, Ji L N, Mao Z W. Int. J. Nanomed., 2015, 10:3147.
[61] Han M, Lv Q, Tang X J, Hu Y L, Xu D H, Li F Z, Liang W Q, Gao J Q. J. Controlled Release, 2012, 163:136.
[62] Wang K, Hu Q, Zhu W, Zhao M, Ping Y, Tang G. Adv. Funct. Mater., 2015, 25:3380.
[63] Shen J N, Meng Q S, Sui H P, Yin Q, Zhang Z W, Yu H J, Li Y P. Mol. Pharm., 2014, 11:2579.
[64] Amjad M W, Amin M C I M, Katas H, Butt A M, Kesharwani P, Iyer A K. Mol. Pharm., 2015, 12:4247.
[65] Wang G H, Yang H K, Zhao Y, Zhang D W, Zhang L M, Lin J T. RSC Adv., 2015, 5:105901.
[66] Shi S. Zhu X C, Guo Q F, Wang Y J, Zuo T, Luo F, Qian Z Y. Int. J. Nanomed., 2012, 7:1749.
[67] Zou S, Cao N, Cheng D, Zheng R, Wang J, Zhu K, Shuai X. Int. J. Nanomed., 2012, 7:3823.
[68] Ding J X, Xiao C S, He C L, Li M Q, Li D, Zhuang X L, Chen X S. Nanotechnology, 2011, 22:494012.
[69] Li Z R, Li J G, Huang J S, Zhang J J, Cheng D, Shuai X T. Macromol. Biosci., 2015, 15:1497.
[70] Yue X, Qiao Y, Qiao N, Guo S T, Xing J F, Deng L D, Xu J Q, Dong A J. Biomacromolecules, 2010, 11:2306.
[71] Cheng Q, Du L L, Meng L W, Han S C, Wei T, Wang X X, Wu Y D, Song X Y, Zhou J H, Zheng S Q, Huang Y Y, Liang X J, Cao H Q, Liang A J, Liang Z C. ACS Appl. Mater. Interfaces, 2016, 8:4347.
[72] Wang Y R, Fang J, Cheng D, Wang Y, Shuai X T. Polymer, 2014, 55:3217.
[73] Yang B, Dong X, Lei Q, Zhuo R X, Feng J, Zhang X Z. ACS Appl. Mater. Interfaces, 2015, 7:22084.
[74] Gaspar V M, Baril P, Costa E C, De M D, Foucher F, Queiroz J A, Sousa F, Pichon C, Correia I J. J. Controlled Release, 2015, 213:175.
[75] Yang S D, Zhu W J, Zhu Q L, Chen W L, Ren Z X, Li F, Yuan Z Q, Li J Z, Liu Y, Zhou X F, Liu C, Zhang X N. J. Biomed. Mater. Res. B:Appl. Biomater., 2016.
[76] Chen M H, Zhang Y, Chen Z J, Xie S Z, Luo X M, Li X H. Acta Biomater., 2017, 49:444.
[77] Sigg S J, Postupalenko V Y, Duskey J T, Palivan C G, Meier W. Biomacromolecules, 2016, 17:935.
[78] Nam K, Nam H Y, Kim P H, Kim S W. Biomaterials, 2012, 33:8122.
[79] Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin V T. Cancer Lett., 2013, 343:224.
[80] Yin T J, Wang L, Yin L F, Zhou J P, Huo M R. Biomaterials, 2015, 61:10.
[81] Chang C, Dan H, Zhang L P, Chang M X, Sheng Y F, Zheng G H, Zhang X Z. J. Appl. Polym. Sci., 2015, 132:41752.
[82] Zhu L, Perche F, Wang T, Torchilin V P. Biomaterials, 2014, 35:4213.
[83] Zhang B Q, Jia F, Fleming M Q, Mallapragada S K. Int. J. Pharm., 2012, 427:88.
[84] Wei W, Lv P P, Chen X M, Yue Z G, Fu Q, Liu S Y, Yue H, Ma G H. Biomaterials, 2013, 34:3912.
[85] Guo D D, Hong S H, Jiang H L, Kim J H, Minai-Tehrani A, Kim J E, Shin J Y, Jiang T, Kim Y K, Choi Y J, Cho C S. Biomaterials, 2012, 33:2272.
[86] Kim Y M, Kim C H, Song S C. ACS Macro Lett., 2016, 5:297.
[87] He C, Ma H, Cheng Y, Li D, Gong Y, Liu J, Tian H, Chen X. J. Controlled Release, 2015, 213:e18.
[88] Ma H C, He C L, Cheng Y L, Li D S, Gong Y B, Liu J G, Tian H Y, Chen X S. Biomaterials, 2014, 35:8723.
[89] Deng Z J, Morton S W, Ben-Akiva E, Dreaden E C, Shopsowitz K E, Hammond P T. ACS Nano, 2013, 7:9571.
[90] Han Y Q, Zhang Y, Li D N, Chen Y Y, Sun J P, Kong F S. Int. J. Nanomed., 2014, 9:4107.
[91] Wang H J, Su W Y, Wang S, Wang X M, Liao Z Y, Kang C S, Han L, Chang J, Wang G X, Pu P Y. Nanoscale, 2012, 4:6501.
[92] Qu M H, Zeng R F, Fang S, Dai Q S, Li H P, Long J T. Int. J. Pharm., 2014, 474:112.
[93] Sun X Y, Pang Z Q, Ye H X, Qiu B, Guo L R, Li J W, Ren J F, Qian Y, Zhang Q Z, Chen J, Jiang X G. Biomaterials, 2012, 33:916.
[94] Yang Z Z, Li J Q, Wang Z Z, Dong D W, Qi X R. Biomaterials, 2014, 35:5226.
[95] Jose A, Labala S, Venuganti V V K. J. Drug Targeting, 2017, 25:330.
[96] Liu X, Huang G. Asian J. Pharm. Sci., 2013, 8:319.
[97] Barea M J, Jenkins M J, Gaber M H, Bridson R H. Int. J. Pharm., 2010, 402:89.
[98] Yao Y, Su Z H, Liang Y C, Zhang N. Int. J. Nanomed., 2015, 10:6185.
[99] Jeong U H, Garripelli V K, Jo S, Myung C S, Hwang S J, Kim J K, Park J S. J. Drug Delivery Sci. Technol., 2014, 24:27.
[100] Garripelli V K, Kim J K, Namgung R, Kim W J, Repka M A, Jo S. Acta Biomater., 2009, 6:477.
[101] Reddy T L, Garikapati K R, Reddy S G, Reddy B V, Yadav J S, Bhadra U, Bhadra M P. Sci. Rep., 2016, 6:35223.
[102] Jhaveri A, Deshpande P, Torchilin V. J. Controlled Release, 2014, 190:352.
[103] Peng Z, Wang C X, Fang E H, Lu X M, Wang G B, Tong Q. Plos One, 2014, 9:e92924.
[104] Peng Z, Fang E H, Wang C X, Lu X M, Wang G B, Tong Q. J. Nanosci. Nanotechnol., 2015, 15:3823.
[105] Li Y, Liu R Y, Yang J, Ma G H, Zhang Z Z, Zhang X. Biomaterials, 2014, 35:9731.
[106] Yin T H, Wang P, Li J G, Wang Y R, Zheng B W, Zheng R Q, Cheng D, Shuai X T. Biomaterials, 2014, 35:5932.
[107] Zuckerman J E, Davis M E. Nat. Rev. Drug Discovery, 2015, 14:843.
[108] Ozcan G, Ozpolat B, Coleman R L, Sood A K, Lopezberestein G. Adv. Drug Delivery Rev., 2015, 87:108.
[109] Gandhi N S, Tekade R K, Chougule M B. J. Controlled Release, 2014, 194:238.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[3] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[4] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[5] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[8] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[9] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[10] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[11] 刘文杰, 刘凯会, 张彦伟, 王良, 张梦裔, 李静. 糖基化在新型冠状病毒侵染中的机制及药物研发中的应用[J]. 化学进展, 2021, 33(4): 524-532.
[12] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[13] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[14] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[15] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.