English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1138-1151 DOI: 10.7536/PC200717 前一篇   后一篇

• 综述 •

浓度梯度微流控芯片在药物筛选中的应用

张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐*()   

  1. 山西农业大学生命科学学院 晋中 030801
  • 收稿日期:2020-07-09 修回日期:2020-10-13 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 申少斐
  • 基金资助:
    国家自然科学基金项目(31700749); 山西省高等学校科技创新计划(2019L0362); 山西农业大学科技创新基金(2016YJ02)

Concentration-Gradient Microfluidic Chips for Drug Screening

Fangjuan Zhang, Haibing Liu, Mengqi Gao, Defu Wang, Yanbing Niu, Shaofei Shen*()   

  1. College of Life Sciences,Shanxi Agricultural University, Jinzhong 030801, China
  • Received:2020-07-09 Revised:2020-10-13 Online:2021-07-20 Published:2020-12-28
  • Contact: Shaofei Shen
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(31700749); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0362); Science and Technology Innovation Funds of Shanxi Agricultural University(2016YJ02)

微流控芯片技术作为21世纪极具代表性的微型分析平台技术之一,以其试剂消耗低、分析微型化、可集成化、易于控制、自动化和良好的生物相容性等优点而成为研究热点,在生物、医学、食品和环境等多个领域都有杰出表现,尤其是药物筛选领域。其中备受关注的浓度梯度微流控芯片更是取得了显著成果。本文综述了近年来用于药物筛选的浓度梯度纸基芯片、浓度梯度水凝胶芯片、浓度梯度液滴芯片、浓度梯度聚二甲基硅氧烷(PDMS)芯片的研究进展;同时对浓度梯度微流控芯片在单细胞分析、组合药物筛选、三维(3D)细胞培养和细胞微环境模拟等方面的应用及优缺点进行了阐述,并在此基础上对其发展前景进行了展望。

Microfluidic chip is one of the most representative technologies of micro-analysis platform in this century. It has many advantages such as low reagent consumption, analytical miniaturization, easy control and integration, high automation and good biological compatibility. It has outstanding performances in many fields such as biology, medicine, food and environment, especially in the field of drug screening which has achieved a series of achievements with its own advantages. This article summarizes the research progress of concentration gradient microfluidic chips for drug screening in recent years, including paper chip, hydrogel chip, droplet chip and polydimethylsiloxane (PDMS) chip. Furthermore, the advantages and disadvantages of concentration gradient microfluidic chip in single cell analysis, combination drug screening, three-dimensional (3D) cell culture, cell microenvironment simulation are described. Finally, we provide a perspective for its application prospects.

Contents

1 Introduction

2 Characteristics of concentration-gradient microfluidic chip

3 Type of concentration-gradient microfluidic chip

3.1 Paper chip

3.2 Hydrogel chip

3.3 Droplet chip

3.4 PDMS chip

4 Application of concentration-gradient microfluidic chip

4.1 Single cell analysis

4.2 Combination drug screening

4.3 3D cell cultures

4.4 Simulated cell microenvironment

5 Conclusion and outlook

()
图1 纸基微流控纸芯片:(A) 3D打印纸基微流控芯片集成平台[25];(B) 用于药物筛选的纸基多通道微流控芯片[26]
Fig. 1 Microfluidic paper chip. (A) The hybrid 3D-printed and paper-based microfluidic platform[25]; (B) A paper-based multichannel microfluidic chip for drug screening[26]
图2 水凝胶微流控芯片:(a) 水凝胶二维表面梯度和三维表面梯度示意图[34];(b) 基于对流扩散的梯度药物形成微流控系统[37];(c) 多浓度梯度水凝胶装置[38];(d) 具有多梯度生化浓度和水凝胶屏障的微流控平台[39]
Fig. 2 Hydrogel microfluidic chip: (a) Schematic diagram of 2D and 3D surface gradients of hydrogel[34]; (b) Convection-diffusion based gradient drug fluid generating microfluidic system[37]; (c) Multi-concentration gradient hydrogel device[38]; (d) Microfluidic platform with multi-gradient biochemical concentration and hydrogel barrier[39]
图3 液滴微流控芯片:(a) 液滴微反应器示意图[42];(b) 产生移动液滴阵列的微流控装置示意图[44];(c) 具有浓度梯度的液滴阵列芯片示意图[45]
Fig. 3 Droplet microfluidic chip. (a) Droplets microreactor formed by microfluidic channels[42]; (b) Schematic diagram of a microfluidic device for generating an array of moving droplets[44]; (c) Schematic diagram of droplet array chip with concentration gradient[45]
图4 PDMS微流控芯片:(a) 双重浓度梯度PDMS芯片构建示意图[16];(b) 自动化细胞培养PDMS芯片平台[51];(c) 用于研究环境污染物引起的支气管上皮损伤的浓度梯度PDMS芯片平台[52]
Fig. 4 PPDMS microfluidic chip. (a) Schematic diagram of PDMS chip of double concentration gradient construction[16]; (b) PDMS chip platform of automated cell culture[51]; (c) A PDMS chip platform for the study of bronchial epithelial injury caused by environmental pollutants[52]
图5 用于单细胞分析的微流控平台:(a) 用于单细胞跟踪和克隆的微流体平台[58];(b) 用于单细胞研究的多浓度梯度微流体装置[59];(c) 用于实时监测分析单细胞反应的微流控平台[60];(d) 包含单细胞捕获阵列的微流控梯度装置[61];(e) 用于单个CTCs表型相关药物敏感性分析的DS芯片[62]
Fig. 5 Microfluidic platform for single cell analysis. (a) Microfluidic array platform for single cell tracking and cloning[58]; (b) Multi-concentration gradient microfluidic device for single cell research[59]; (c) Microfluidic platform for real-time monitoring and analysis of single cell reaction[60]; (d) Microfluidic gradient device containing single cell capture array[61]; (e) Schematics showing the workflow for phenotype-related drug sensitivity analysis of single CTCs using the DS-Chip[62]
图6 组合药物筛选:(a) 单药治疗和组合治疗比较[70];(b) 用于产生不同药物组合的微流控阵列示意图[71];(c)组合抗生素测试的微流控平台[72];(d) 用于三重浓度梯度产生的微流控装置示意图[15]
Fig. 6 Combination drug Screening. (a) Comparison between monotherapy and combination therapy[70]; (b) Schematic diagram of a microfluidic array for generating different drug combinations[71]; (c) Microfluidic platform of combined antibiotic testing[72]; (d) Schematic diagram of microfluidic device for generating triple concentration gradient[15]
图7 3D细胞培养:(a) 细胞在二维和三维基底上的生长情况[74];(b) 3D芯片用于同时给药多种药物浓度[75];(c) 进行球体培养的液滴微流控平台[76]
Fig. 7 3D cell culture. (a) Graphical representation of a growing cell on a 2D and 3D substrate[74]; (b) The 3D chip is used for simultaneous delivery of multiple drug concentrations[75]; (c) Droplet-microfluidic platform for the culture of spheroids[76]
图8 模拟细胞微环境:(a) 微流控芯片模拟肿瘤微环境[81];(b) 用于药物筛选研究的仿生体外肿瘤微组织的微流控模型[83];(c) 用于细胞捕获和肿瘤球形成的微肿瘤模型[84]
Fig. 8 Simulated cell microenvironment. (a) The microfluidic chip simulates the tumor microenvironment[81]; (b) Microfluidic model of bionic tumor micro-tissue in vitro for drug screening research[83]; (c) Microtumor model for cell capture and sphere formation[84]
[1]
Liu X Y, Zheng W F, Jiang X Y. ACS Sens., 2019, 4(6):1465.

doi: 10.1021/acssensors.9b00479     URL    
[2]
Begley C G, Ellis L M. Nature, 2012, 483(7391):531.

doi: 10.1038/483531a     URL    
[3]
Wiles C, Watts P. Org. Proc. Res. Dev., 2011, 15:947.
[4]
Wang J Y, Sui G D, Mocharla V P, Lin R J, Phelps M E, Kolb H C, Tseng H R. Angew. Chem., 2006, 118(32):5402.

doi: 10.1002/(ISSN)1521-3757     URL    
[5]
Velve-Casquillas G, Le Berre M, Piel M, Tran P T. Nano Today, 2010, 5(1):28.

pmid: 21152269
[6]
Ghaemmaghami A M, Hancock M J, Harrington H, Kaji H, Khademhosseini A. Drug Discov. Today, 2012, 17(3/4):173.

doi: 10.1016/j.drudis.2011.10.029     URL    
[7]
Wang X, Liu Z M, Pang Y. RSC Adv., 2017, 7(48):29966.

doi: 10.1039/C7RA04494A     URL    
[8]
Ma C, Zhao L, Zhou E M, Xu J, Shen S F, Wang J Y. Anal. Chem., 2016, 88(3):1719.

doi: 10.1021/acs.analchem.5b03869     URL    
[9]
Zhao L, Ma C, Shen S F, Tian C, Xu J, Tu Q, Li T B, Wang Y L, Wang J Y. Biosens. Bioelectron., 2016, 78:423.

doi: S0956-5663(15)30451-6     pmid: 26655183
[10]
Liu W M, Xu J, Li T B, Zhao L, Ma C, Shen S F, Wang J Y. Anal. Chem., 2015, 87(19):9752.

doi: 10.1021/acs.analchem.5b01915     URL    
[11]
Shen S F, Ma C, Zhao L, Wang Y L, Wang J C, Xu J, Li T B, Pang L, Wang J Y. Lab Chip, 2014, 14(14):2525.

doi: 10.1039/C3LC51384J     URL    
[12]
Shen S F, Tian C, Li T B, Xu J, Chen S W, Tu Q, Yuan M S, Liu W M, Wang J Y. Lab Chip, 2017, 17(21):3578.

doi: 10.1039/C7LC00691H     URL    
[13]
Shen S F, Kou L S, Zhang X, Wang D F, Niu Y B, Wang J Y. Adv. Theory Simul., 2018, 1(4):1700034.

doi: 10.1002/adts.v1.4     URL    
[14]
Shen S F, Zhang F J, Wang S T, Wang J R, Long D D, Wang D F, Niu Y B. Sens. Actuat. B: Chem., 2019, 287:320.

doi: 10.1016/j.snb.2019.02.066     URL    
[15]
Shen S F, Zhang X, Zhang F J, Wang D F, Long D D, Niu Y B. Talanta, 2020, 208:120477.

doi: 10.1016/j.talanta.2019.120477     URL    
[16]
Shen S F, Zhang F J, Gao M Q, Niu Y B. Micromachines, 2020, 11(5):493.

doi: 10.3390/mi11050493     URL    
[17]
Cui X, Guo W J, Sun Y B, Sun B C, Hu S H, Sun D, Lam R H W. Biomicrofluidics, 2017, 11(1):014105.

doi: 10.1063/1.4974012     URL    
[18]
Liu X, Jia Y, Han Z, Hou Q, Zhang W, Zheng W, Jiang X. Angew. Chem. Int. Edit, 2021, 60(22):12319.

doi: 10.1002/anie.v60.22     URL    
[19]
Gao D, Li H F, Wang N J, Lin J M. Anal. Chem., 2012, 84(21):9230.

doi: 10.1021/ac301966c     URL    
[20]
Wang X, Liu Z M, Pang Y. RSC Adv., 2017, 7(48):29966.

doi: 10.1039/C7RA04494A     URL    
[21]
Chen X J, Chen H, Wu D Z, Chen Q N, Zhou Z, Zhang R R, Peng X Y, Su Y C, Sun D H. Sens. Actuat. B: Chem., 2018, 276:507.

doi: 10.1016/j.snb.2018.08.121     URL    
[22]
Xu B Y, Hu S W, Qian G S, Xu J J, Chen H Y. Lab on a Chip, 2013, 13(18):3714.

doi: 10.1039/c3lc50676b     URL    
[23]
Ko H, Lee J, Kim Y, Lee B, Jung C H, Choi J H, Kwon O S, Shin K. Adv. Mater., 2014, 26(15):2335.

doi: 10.1002/adma.v26.15     URL    
[24]
Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1):3.

doi: 10.1021/ac9013989     pmid: 20000334
[25]
Liu P, Li B W, Fu L W, Huang Y, Man M S, Qi J, Sun X Y, Kang Q, Shen D Z, Chen L X. ACS Sens., 2020, 5(2):464.

doi: 10.1021/acssensors.9b02205     URL    
[26]
Wu Y, Gao Q, Nie J, Fu J Z, He Y. ACS Biomater. Sci. Eng., 2017, 3(4):601.

doi: 10.1021/acsbiomaterials.7b00084     URL    
[27]
Hong B, Xue P, Wu Y F, Bao J N, Chuah Y J, Kang Y J. Biomed. Microdevices, 2016, 18(1):1.

doi: 10.1007/s10544-015-0028-9     URL    
[28]
Chen Q S, He Z Y, Liu W, Lin X X, Wu J, Li H F, Lin J M. Adv. Healthcare Mater., 2015, 4(15):2291.

doi: 10.1002/adhm.201500383     URL    
[29]
Su M, Ge L, Ge S G, Li N Q, Yu J H, Yan M, Huang J D. Anal. Chimica Acta, 2014, 847:1.

doi: 10.1016/j.aca.2014.08.013     URL    
[30]
Schönherr E, Hausser H J. Dev. Immunol., 2000, 7(2/4):89.

doi: 10.1155/2000/31748     URL    
[31]
Uebersax L, Merkle H P, Meinel L. Tissue Eng. B: Rev., 2009, 15(3):263.

doi: 10.1089/ten.teb.2008.0668     URL    
[32]
Keenan T M, Folch A. Lab Chip, 2008, 8(1):34.

doi: 10.1039/B711887B     URL    
[33]
Drury J L, Mooney D J. Biomaterials, 2003, 24(24):4337.

doi: 10.1016/S0142-9612(03)00340-5     URL    
[34]
Lühmann T, Hall H. Materials, 2009, 2(3):1058.

doi: 10.3390/ma2031058     URL    
[35]
Ladet S, David L, Domard A. Nature, 2008, 452(7183):76.

doi: 10.1038/nature06619     URL    
[36]
He J K, Du Y N, Villa-Uribe J L, Hwang C, Li D C, Khademhosseini A. Adv. Funct. Mater., 2010, 20(1):131.

doi: 10.1002/adfm.v20:1     URL    
[37]
Hu X J, Zhao S K, Luo Z Y, Zuo Y F, Wang F, Zhu J M, Chen L F, Yang D Y, Zheng Y J, Zheng Y J, Cheng Y X, Zhou F L, Yang Y. Lab on a Chip, 2020, 20(12):2228.

doi: 10.1039/D0LC00255K     URL    
[38]
Mahadik B P, Wheeler T D, Skertich L J, Kenis P J A, Harley B A C. Adv. Healthcare Mater., 2014, 3(3):449.

doi: 10.1002/adhm.v3.3     URL    
[39]
Liu W M, Han K, Sun M L, Huang Z C, Wang J Y. Adv. Mater. Technol., 2019, 4(2):1800434.

doi: 10.1002/admt.v4.2     URL    
[40]
Song H, Chen D L, Ismagilov R F. Angew. Chem. Int. Ed., 2006, 45(44):7336.

doi: 10.1002/(ISSN)1521-3773     URL    
[41]
Wang Y T, Chen Z Y, Bian F K, Shang L R, Zhu K X, Zhao Y J. Expert. Opin. Drug Discov., 2020, 15(8):969.

doi: 10.1080/17460441.2020.1758663     URL    
[42]
Song H, Tice J D, Ismagilov R F. Angew. Chem., 2003, 115(7):792.

doi: 10.1002/ange.200390172     URL    
[43]
Rotman B. Proc. Natl. Acad. Sci. U.S.A., 1961, 47(12):1981.

doi: 10.1073/pnas.47.12.1981     URL    
[44]
Sun M, Vanapalli S A. Anal. Chem., 2013, 85(4):2044.

doi: 10.1021/ac303526y     URL    
[45]
Cai L F, Zhu Y, Du G S, Fang Q. Anal. Chem., 2012, 84(1):446.

doi: 10.1021/ac2029198     URL    
[46]
Sollier E, Murray C, Maoddi P, di Carlo D. Lab on a Chip, 2011, 11(22):3752.

doi: 10.1039/c1lc20514e     pmid: 21979377
[47]
Berthier E, Young E W K, Beebe D. Lab on a Chip, 2012, 12(7):1224.

doi: 10.1039/c2lc20982a     pmid: 22318426
[48]
McDonald J C, Whitesides G M. Acc. Chem. Res., 2002, 35(7):491.

doi: 10.1021/ar010110q     URL    
[49]
McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H K, Schueller O J A, Whitesides G M. Electrophoresis, 2000, 21(1):27.

pmid: 10634468
[50]
Ng J M K, Gitlin I, Stroock A D, Whitesides G M. Electrophoresis, 2002, 23(20):3461.

doi: 10.1002/1522-2683(200210)23:20【-逻*辑*与-】#x00026;lt;3461::AID-ELPS3461【-逻*辑*与-】#x00026;gt;3.0.CO;2-8     URL    
[51]
Gómez-Sjöberg R, Leyrat A A, Pirone D M, Chen C S, Quake S R. Anal. Chem., 2007, 79(22):8557.

pmid: 17953452
[52]
Zhang F, Tian C, Liu W M, Wang K, Wei Y Q, Wang H S, Wang J Y, Liu S Q. ACS Sens., 2018, 3(12):2716.

doi: 10.1021/acssensors.8b01370     URL    
[53]
Zhang X, Wei X, Wei Y J, Chen M L, Wang J H. Talanta, 2020, 218:121147.

doi: S0039-9140(20)30438-0     pmid: 32797903
[54]
Yin H B, Marshall D. Curr. Opin. Biotechnol., 2012, 23(1):110.

doi: 10.1016/j.copbio.2011.11.002     URL    
[55]
Reece A, Xia B Z, Jiang Z L, Noren B, McBride R, Oakey J. Curr. Opin. Biotechnol., 2016, 40:90.

doi: 10.1016/j.copbio.2016.02.015     URL    
[56]
Pang L, Ding J, Liu X X, Yuan H Y, Ge Y X, Fan J L, Fan S K. Trac Trends Anal. Chem., 2020, 129:115940.

doi: 10.1016/j.trac.2020.115940     URL    
[57]
Liu R M, Sun M, Zhang G W, Lan Y P, Yang Z B. Anal. Chimica Acta, 2019, 1092: 42.

doi: 10.1016/j.aca.2019.09.065     URL    
[58]
Chung J, Ingram P N, Bersano-Begey T, Yoon E. Biomicrofluidics, 2014, 8(6):064103.

doi: 10.1063/1.4900823     URL    
[59]
Liang L, Jin Y X, Zhu X Q, Zhou F L, Yang Y. Lab on a Chip, 2018, 18(10):1422.

doi: 10.1039/c8lc00088c     pmid: 29713720
[60]
Song J, Ryu H, Chung M, Kim Y, Blum Y, Lee S S, Pertz O, Jeon N L. Biosens. Bioelectron., 2018, 104:58.

doi: 10.1016/j.bios.2017.12.038     URL    
[61]
Fernandes J T S, Tenreiro S, Gameiro A, Chu V, Outeiro T F, Conde J P. Lab Chip, 2014, 14(20):3949.

doi: 10.1039/c4lc00756e     pmid: 25167219
[62]
Pei H M, Yu M, Dong D F, Wang Y G, Li Q L, Li L, Tang B. Chem. Sci., 2020, 11(33):8895.

doi: 10.1039/C9SC05566E     URL    
[63]
Levy S B, Marshall B. Nat. Med., 2004, 10(12):S122.

doi: 10.1038/nm1145     URL    
[64]
Ventola C L. J. Clin. Pharm. Ther., 2015, 40(4):277.
[65]
Fischbach M A, Walsh C T. Science, 2009, 325(5944):1089.

doi: 10.1126/science.1176667     pmid: 19713519
[66]
Blair J M A, Webber M A, Baylay A J, Ogbolu D O, Piddock L J V. Nat. Rev. Microbiol., 2015, 13(1):42.

doi: 10.1038/nrmicro3380     URL    
[67]
Verbrugge F H, Grieten L, Mullens W. Curr. Heart Fail. Rep., 2014, 11(1):1.

doi: 10.1007/s11897-013-0174-4     pmid: 24218088
[68]
Song S W, Kim S D, Oh D Y, Lee Y, Lee A C, Jeong Y, Bae H J, Lee D, Lee S, Kim J, Kwon S. Adv. Sci., 2019, 6(3):1801380.

doi: 10.1002/advs.v6.3     URL    
[69]
Zhou H, Zhao L, Zhang X J. Anal. Chem., 2015, 87(4):2048.

doi: 10.1021/ac504823s     pmid: 25630902
[70]
Parhi P, Mohanty C, Sahoo S K. Drug Discov. Today, 2012, 17(17/18):1044.

doi: 10.1016/j.drudis.2012.05.010     URL    
[71]
Kim J, Taylor D, Agrawal N, Wang H, Kim H, Han A, Rege K, Jayaraman A. Lab on a Chip, 2012, 12(10):1813.

doi: 10.1039/c2lc21202a     URL    
[72]
Kim S, Masum F, Kim J K, Chung H J, Jeon J S. Lab on a Chip, 2019, 19(6):959.

doi: 10.1039/C8LC01406J     URL    
[73]
Christoffersson J, Mandenius C F. Methods in Molecular Biology. New York: Springer, 2019.
[74]
Castiaux A D, Spence D M, Martin R S. Anal. Methods, 2019, 11(33):4220.

doi: 10.1039/C9AY01328H     URL    
[75]
Toh Y C, Lim T C, Tai D A, Xiao G F, van Noort D, Yu H. Lab on a Chip, 2009, 9(14):2026.

doi: 10.1039/b900912d     URL    
[76]
Sart S, Tomasi R F X, Amselem G, Baroud C N. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6     URL    
[77]
Chen P, Li S J, Guo Y R, Zeng X M, Liu B F. Anal. Chimica Acta, 2020, 1125: 94.

doi: 10.1016/j.aca.2020.05.065     URL    
[78]
Wightman R M. Science, 2006, 311(5767):1570.

pmid: 16543451
[79]
Xu T, Yue W Q, Li C W, Yao X S, Yang M S. Lab on a Chip, 2013, 13(6):1060.

doi: 10.1039/c3lc40880a     URL    
[80]
Lin N, Zhou X B, Geng X C, Drewell C, Hübner J, Li Z G, Zhang Y L, Xue M, Marx U, Li B. Sci. Rep., 2020, 10(1):1.

doi: 10.1038/s41598-019-56847-4     URL    
[81]
Shang M L, Soon R H, Lim C T, Khoo B L, Han J. Lab on a Chip, 2019, 19(3):369.

doi: 10.1039/C8LC00970H     URL    
[82]
Huang Y L, Segall J E, Wu M M. Lab on a Chip, 2017, 17(19):3221.

doi: 10.1039/c7lc00623c     pmid: 28805874
[83]
Chen Y L, Gao D, Liu H X, Lin S, Jiang Y Y. Anal. Chimica Acta, 2015, 898:85.

doi: 10.1016/j.aca.2015.10.006     URL    
[84]
Zhang Z X, Chen Y C, Urs S, Chen L L, Simeone D M, Yoon E. Small, 2018, 14(42):1703617.

doi: 10.1002/smll.v14.42     URL    
[85]
Azizi F, Lu H, Chiel H J, Mastrangelo C H. J. Neurosci. Methods, 2010, 192(2):193.

doi: 10.1016/j.jneumeth.2010.07.011     URL    
[86]
Zhang X Y, Roper M G. Anal. Chem., 2009, 81(3):1162.

doi: 10.1021/ac802579z     URL    
[87]
Zhang T, Meng J Y, Li S S, Yu C Z, Li J W, Wei C Y, Dai S J. Micromachines, 2020, 11(3):284.

doi: 10.3390/mi11030284     URL    
[88]
Dhumpa R, Roper M G. Anal. Chimica Acta, 2012, 743:9.

doi: 10.1016/j.aca.2012.07.006     URL    
[1] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[2] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[3] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[4] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[5] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[6] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[7] 林彩琴, 姚波* . 数字PCR技术进展[J]. 化学进展, 2012, 24(12): 2415-2423.
[8] 郝丽, 徐春秀, 程和勇, 刘金华, 殷学锋*. 微流控芯片测定单细胞内化学组分的进展[J]. 化学进展, 2012, 24(08): 1544-1553.
[9] 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用[J]. 化学进展, 2011, 23(9): 1945-1958.
[10] 黄华璠, 梁坤, 刘玉鹏, 黄士堂, 褚泰伟. F-18标记放射性药物的新方法与新技术[J]. 化学进展, 2011, 23(7): 1501-1506.
[11] 瞿祥猛, 林荣生, 陈宏. 基于微流控芯片的微阵列分析[J]. 化学进展, 2011, 23(01): 221-230.
[12] 沈玉勤 姚波 方群. 磁场控制技术在微流控芯片中的应用*[J]. 化学进展, 2010, 22(01): 133-139.
[13] 卢时湧 吴章桂 叶伟东 吴国锋 潘一斌 钱俊青. 应用前沿亲和色谱研究分子之间相互作用及其应用[J]. 化学进展, 2010, 22(01): 148-152.
[14] 姜萍,屈锋,谭信,李勤,耿利娜,邓玉林. 基于微流控芯片电泳的生物分子间相互作用研究*[J]. 化学进展, 2009, 21(09): 1895-1904.
[15] 耿利娜,姜萍,徐建栋,车宝泉,屈锋,邓玉林. 纳米技术在毛细管电泳和微流控芯片电泳生物大分子分离中的应用* [J]. 化学进展, 2009, 21(09): 1905-1921.
阅读次数
全文


摘要