English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 794-805 DOI: 10.7536/PC141043 前一篇   后一篇

• 综述与评论 •

近红外荧光染料的结构、性质及生物荧光成像应用

王晓驰, 常刚, 曹瑞军, 孟令杰*   

  1. 西安交通大学理学院化学系 西安 710049
  • 收稿日期:2014-10-01 修回日期:2015-01-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 孟令杰 E-mail:menglingjie@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21174087, 21474079), 教育部新世纪优秀人才计划(No.NCET-13-0453), 中国博士后面上基金和特别资助基金(No.2013M540738, 2014T70909), 中央高校基本科研业务费 (No.08142027, 08143101)资助

Structure and Properties of Near-Infrared Fluorescent Dyes and the Bioimaging Application

Wang Xiaochi, Chang Gang, Cao Ruijun, Meng Lingjie*   

  1. Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2014-10-01 Revised:2015-01-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174087, 21474079), the Program for New Century Excellent Talents in University (No.NCET-13-0453), the China Postdoctoral Foundation Fund Project and Special Support Fund(No.2013M540738,2014T70909), and the Fundamental Funds for the Central Universities (No.08142027, 08143101).
近红外荧光生物成像技术由于具有深的组织穿透性、低背景荧光干扰、最小生物样本光损伤等特点引起人们越来越多的关注。开发高荧光效率、低毒性的近红外荧光染料是近红外荧光成像技术发展的关键所在。本文综述了五类主要的有机近红外荧光染料(菁类、BODIPY类、罗丹明类、方酸类、卟啉类)的研究进展,重点分析其结构与光学性质等构效关系,为近红外荧光染料的设计和制备提供指导。另外,总结了有机近红外荧光材料功能化修饰的主要方法以改善生物相容性、靶向性能等,最后对近红外荧光染料存在的主要问题以及未来的热点方向进行了分析和展望。
The near-infrared(NIR)fluorescence imaging technologies have attracted considerable interest in recent years. They take great advantages for in vivo bioimaging because of their deep tissue penetration, minimum photo-damage to biological samples, and minimum interference from background auto-fluorescence by biomolecules in the living systems. It is still a crucial issue to develop NIR fluorescent dyes with high efficiency and low toxicity for fluorescence bioimaging technology. This article reviews the advances in the development of organic NIR fluorescent dyes including cyanines, BODIPYs, rhodamine analogues, squaraines, porphyrins; and the relationship between the structure and optical properties is highlighted to guide the design and preparation of NIR fluorescent dyes. In addition, We focus on discussing the main methodologies of functional modification to improve the biocompatibility and targeting capacities of organic NIR fluorescent dyes to realize multifunction and high performance. Finally, the future opportunities and challenges of NIR fluorescent dyes and NIR fluorescence imaging technologies are addressed to our understanding.

Contents
1 Introduction
2 Organic NIR fluorescent dyes
2.1 Cyanines
2.2 BODIPYs
2.3 Rhodamine analogues
2.4 Squaraines
2.5 Others
3 Functional modification and bioimaging applications
3.1 Functional modification
3.2 Fluorescence bioimaging
4 Conclusion and outlook

中图分类号: 

()
[1] Weissleder R, Pittet M J. Nature, 2008, 452: 580.
[2] Chen M, Yin M. Prog. Polym. Sci., 2014, 39: 365.
[3] Yuan L, Lin W, Zheng K, He L, Huang W. Chem. Soc. Rev., 2012, 42: 622.
[4] Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. J. Pharm. Sci. Us., 2013, 102: 6.
[5] Luo S, Zhang E, Su Y, Cheng T, Shi C. Biomaterials, 2011, 32: 7127.
[6] Guo Z Q, Park S, Yoon J, Shin I. Chem. Soc. Rev., 2012, 41: 15.
[7] Han J, Burgess K. Chem. Rev., 2010, 110: 2709.
[8] Ni Y, Wu J. Org. Biomol. Chem., 2014, 12: 3774.
[9] Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K. Adv. Funct. Mater., 2012, 22: 3539.
[10] Hilderbrand S A, Weissleder R. Curr. Opin. Chem. Biol., 2010, 14: 71.
[11] Qian G, Wang Z Y. Chem. Asian J., 2010, 5: 1006.
[12] Mishra A, Behera R K, Behera P K, Mishra B K, Behera G B. Chem. Rev., 2000,100: 1973.
[13] James N S, Chen Y, Joshi P, Ohulchanskyy T Y, Ethirajan M, Henary M, Strekowsk L, Pandey R K. Theranostics, 2013, 3: 692.
[14] Peng X, Yang Z, Wang J, Fan J, He Y, Song F, Wang B, Sun S, Qu J, Qi J, Yang M. J. Am. Chem. Soc., 2011, 133: 6626.
[15] Cao J, Hu C, Sun W, Xu Q, Fan J, Song F, Sun S, Peng X. RSC. Adv., 2014, 4: 13385.
[16] Wang L Y, Chen Q W, Zhai G H, Wen Z Y, Zhang Z X. J. Mol. Struct: THEOCHEM, 2006, 778: 15.
[17] Desmettre T, Devoisselle J M, Mordon S. Surv. Ophthalmol., 2000, 45: 15.
[18] Strekowski L, Lipowska M, Patonay G. J.Org. Chem., 1992, 57: 4578.
[19] Yu L, Li T, Wang Q, Li L, Chen L. Res. Chem. Intermediat., 2014, 40: 1469.
[20] Samanta A, Vendrell M, Das R, Chang Y. Chem. Commun., 2010, 46: 7406.
[21] Silva G L, Ediz V, Yaron D, Armitage B A. J. Am. Chem. Soc., 2007, 129: 5710.
[22] Wu X, Chang S, Sun X, Guo Z, Li Y, Tang J, Shen Y, Shi J, Tian H, Zhu W. Chem. Sci., 2013, 4: 1221.
[23] Bouteiller C, Clavé G, Bernardin A, Chipon B, Massonneau M, Renard P. Bioconjugate Chem., 2007, 18: 1303.
[24] Luo S, Tan X, Qi Q, Guo Q, Ran X, Zhang L, Zhang E, Liang Y, Weng L, Zheng H, Cheng T, Su Y, Shi C. Biomaterials, 2013, 34: 2244.
[25] Zhu S, Zhang J, Vegesna G, Tiwari A, Luo F, Zeller M, Luck R, Li H, Green S, Liu H. RSC Adv., 2011, 2: 404.
[26] Boens N, Leen V, Dehaen W. Chem. Soc. Rev., 2012, 41: 1130.
[27] Killoran J, Allen L, Gallagher J F, Gallagher W M,O Shea D F. Chem. Commun., 2002, 17: 1862.
[28] Bellier Q, Dalier F, Jeanneau E, Maury O, Andraud C. New J. Chem., 2012, 36: 768.
[29] Hall M J, McDonnell S O, Killoran J, O'Shea D F. J. Org. Chem., 2005, 70: 5571.
[30] Zhang X, Yu H, Xiao Y. J. Org. Chem., 2012, 77: 669.
[31] Zhang X, Wang C, Han Z, Xiao Y. ACS. Appl. Mater. Interfaces, 2014, 6: 21669.
[32] Ulrich G, Goeb S, De Nicola A, Retailleau P, Ziessel R. J.Org. Chem., 2011, 76: 4489.
[33] Sarma T, Panda P K, Setsune J. Chem. Commun., 2013, 49: 9806.
[34] Zeng L, Jiao C, Huang X, Huang K, Chin W, Wu J. Org. Lett., 2011, 13: 6026.
[35] Zhao W, Carreira E M. Angew. Chem. Int. Ed., 2005, 44: 1677.
[36] Zhao W, Carreira E M. Chem. Eur. J., 2006, 12: 7254.
[37] Chen J, Burghart A, Derecskei-Kovacs A, Burgess K. J. Org. Chem., 2000, 65: 2900.
[38] Jiao L, Wu Y, Wang S, Hu X, Zhang P, Yu C, Cong K, Meng Q, Hao E, Vicente M. J. Org. Chem., 2014, 79: 1830.
[39] Gorman A, Killoran J, O'Shea C, Kenna T, Gallagher W M, O'Shea D F. J. Am. Chem. Soc., 2004, 126: 10619.
[40] Pastierik T, Šebej P, Medalová J, Štacko P, Klán P. J. Org. Chem., 2014, 79: 3374.
[41] Yang Y K, Cho H J, Lee J, Shin I, Tae J. Org. Lett., 2009, 11: 859.
[42] Beija M, Afonso C, Martinho J. Chem. Soc. Rev., 2009, 38: 2410.
[43] Liu J, Diwu Z, Leung W, Lu Y, Patch B, Haugland R P. Tetrahedron Lett., 2003, 44: 4355.
[44] Alessi A, Salvalaggio M, Ruzzon G. J. Lumin., 2013, 134: 385.
[45] Detty M R, Prasad P N, Donnelly D J, Ohulchanskyy T, Gibson S L, Hilf R. Bioorgan. Med. Chem., 2004, 12: 2537.
[46] Yuan L, Lin W, Chen H. Biomaterials, 2013, 34: 9566.
[47] Sun Y, Liu J, Lv X, Liu Y, Zhao Y, Guo W. Angew. Chem. Int. Ed., 2012, 51: 7634.
[48] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. ACS Chem. Biol., 2011, 6: 600.
[49] Yuan L, Lin W, Yang Y, Chen H. J. Am. Chem. Soc., 2012, 134: 1200.
[50] Fu M, Xiao Y, Qian X, Zhao D, Xu Y. Chem. Commun., 2008, 15: 1780.
[51] Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N, Terai T, Okabe T, Nagano T. J. Am. Chem. Soc., 2012, 134: 5029.
[52] Hu L, Yan Z, Xu H. RSC Adv., 2013, 3: 7667.
[53] Avirah R R, Jayaram D T, Adarsh N, Ramaiah D. Org. Biomol. Chem., 2012, 10: 911.
[54] Markova L I, Terpetschnig E A, Patsenker L D. Dyes Pigments, 2013, 99: 561.
[55] Mayerhöffer U, Fimmel B, Würthner F. Angew. Chem. Int. Ed., 2012, 51: 164.
[56] Mayerhöffer U, Gsänger M, Stolte M, Fimmel B, Würthner F. Chem. Eur. J., 2013, 19: 218.
[57] Umezawa K, Citterio D, Suzuki K. Anal. Sci., 2008, 24: 213.
[58] Mori H, Tanaka T, Osuka A. J. Mater. Chem. C, 2013, 1: 2500.
[59] Toganoh M, Kimura T, Furuta H. Chem. Eur. J., 2008, 14: 10585.
[60] Yoon M, Misra R, Yoon Z S, Kim K S, Lim J M, Chandrashekar T K, Kim D. J. Phys. Chem. B, 2008, 112: 6900.
[61] Zhu S, Dorh N, Zhang J, Vegesna G, Li H, Luo F, Tiwari A, Liu H. J. Mater. Chem., 2012, 22: 2781.
[62] Schädlich A, Caysa H, Mueller T, Tenambergen F, Rose C, Göpferich A, Kuntsche J, Mäder K. ACS Nano, 2011, 5: 8710.
[63] Cheng L, He W, Gong H, Wang C, Chen Q, Cheng Z, Liu Z. Adv. Funct. Mater., 2013, 23: 5893.
[64] Xu Y, Li Z, Malkovskiy A, Sun S, Pang Y. J. Phys. Chem. B, 2010, 114: 8574.
[65] Gao F P, Lin Y X, Li L L, Liu Y, Mayerhoffer U, Spenst P, Su J G, Li J Y, Wurthner F, Wang H. Biomaterials, 2014, 35: 1004.
[66] Liu F, Deng D, Chen X, Qian Z, Achilefu S, Gu Y. Mol. Imaging Biol., 2010, 12: 595.
[67] Harada T, Sano K, Sato K, Watanabe R, Yu Z, Hanaoka H, Nakajima T, Choyke P L, Ptaszek M, Kobayashi H. Bioconjugate Chem., 2014, 25: 362.
[68] Alexander V M, Sano K, Yu Z, Nakajima T, Choyke P L, Ptaszek M, Kobayashi H. Bioconjugate Chem., 2012, 23: 1671.
[69] Mitsunaga M, Ogawa M, Kosaka N, Rosenblum L T, Choyke P L, Kobayashi H. Nat. Med., 2011, 17: 1685.
[70] Nakajima T, Mitsunaga M, Bander N H, Heston W, Choyke P L, Kobayashi H. Bioconjugate Chem., 2011, 22: 1700.
[71] Guo Z, Park S, Yoon J, Shin I. Chem. Soc. Rev., 2014, 43: 16.
[72] Yu F, Li P, Li G, Zhao G, Chu T, Han K. J. Am. Chem. Soc., 2011, 133: 11030.
[73] Cheng G, Fan J, Sun W, Cao J, Hu C, Peng X. Chem. Commun., 2014, 50: 1018.
[74] Wang T, Zhao Q, Hu H, Yu S, Liu X, Liu L, Wu Q. Chem. Commun., 2012, 48: 8781.
[75] Benniston A, Harriman A, Whittle V L, Zelzer M. Eur. J. Org. Chem., 2010, 3: 523.
[76] Yang Z, He Y, Lee J, Park N, Suh M, Chae W, Cao J, Peng X, Jung H, Kang C, Kim J S. J. Am. Chem. Soc., 2013, 135: 9181.
[77] Wang L, Xiao Y, Tian W, Deng L. J. Am. Chem. Soc., 2013, 135: 2903.
[78] Kuimova M K, Yahioglu G, Levitt J A, Suhling K. J. Am. Chem. Soc., 2008, 130: 6672.
[79] Koenig M, Bottari G, Brancato G, Barone V, Guldi D M, Torres T. Chem. Sci., 2013, 4: 2502.
[80] Ryu J H, Shin M, Kim S A, Lee S, Kim H, Koo H, Kim B S, Song H K, Kim S H, Choi K, Kwon I C, Jeon H, Kim K. Biomaterials, 2013, 34: 9149.
[81] Cao W, Ng K K, Corbin I, Zhang Z, Ding L, Chen J, Zheng G. Bioconjugate Chem., 2009, 20: 2023.
[82] Kelderhouse L E, Chelvam V, Wayua C, Mahalingam S, Poh S, Kularatne S A, Low P S. Bioconjugate Chem., 2013, 24: 1075.
[83] Wu X, Sun X, Guo Z, Tang J, Shen Y, James T D, Tian H, Zhu W. J. Am. Chem. Soc., 2014, 136: 3579.
[84] Li S, Goins B, Zhang L, Bao A. Bioconjugate Chem., 2012, 23: 1322.
[85] Chen J, Guo Z, Wang H, Gong M, Kong X, Xia P, Chen Q. Biomaterials, 2013, 34: 571.
[86] Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, Yao Z, Chen F, He Q, Liu J, Zhang S, Fan W, Zhou L, Peng W, Shi J. ACS Nano, 2014, 8: 1231.
[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[6] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[9] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[10] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[11] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[12] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[13] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[14] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[15] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.