English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 620-632 DOI: 10.7536/PC121029 前一篇   后一篇

• 材料 •

基于纳米结构材料的磷酸化蛋白/多肽富集和分析

程功1, 王志刚1, 刘彦琳1, 张吉林*1, 孙德慧3, 倪嘉缵1,2   

  1. 1. 中国科学院长春应用化学研究所 稀土资源利用国家重点实验室 长春 13002;
    2. 深圳大学生命科学学院 深圳 518060;
    3. 长春工程学院 长春 130012
  • 收稿日期:2012-10-01 修回日期:2012-11-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 张吉林 E-mail:zjl@ciac.jl.cn
  • 基金资助:

    国家自然科学基金项目(No.20871083,21171161)资助

Phosphoprotein/Phosphopeptide Enrichment and Analysis Based on Nanostructured Materials

Cheng Gong1, Wang Zhigang1, Liu Yanlin1, Zhang Jilin*1, Sun Dehui3, Ni Jiazuan1,2   

  1. 1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13002;
    2. College of Life Sciences, Shenzhen University, Shenzhen 518060, China;
    3. Changchun Institute of Technology, Changchun 130012, China
  • Received:2012-10-01 Revised:2012-11-01 Online:2013-04-24 Published:2013-04-09

蛋白质磷酸化是最为广泛的翻译后修饰之一。在生物体液或组织中,许多低丰度的磷酸化蛋白和磷酸化肽是具有高度临床灵敏性和特异性的生物标记物,这些生物分子对许多疾病的检测和病理的阐释可能提供重要的信息。因为蛋白质磷酸化动态可逆且磷酸化蛋白丰度很低,所以很难直接从复杂的生物样品中直接检测到磷酸化蛋白和磷酸化肽。纳米结构材料因其大比表面积、丰富的活性亲合位点和特殊结构,在磷酸化肽和磷酸化蛋白的分离和富集方面已经引起了特别的关注,并成为目前磷酸化蛋白质组学富集和鉴定方面的研究热点。许多介孔、磁性、杂化或化学修饰的亲合材料被研发并用于磷酸化蛋白/多肽的富集与分离;此外,一些多功能纳米结构材料也被研发并用于蛋白质组学中磷酸化蛋白/多肽的快速高效的富集提纯。在这篇综述中,我们专注于纳米结构材料在磷酸化蛋白/多肽富集和提纯方面的最新进展。

Protein phosphorylation is one of the most ubiquitous post-translational modifications. Many low-abundance endogenous phosphoproteins and phosphopeptides in the body fluids or tissues are biomarkers with higher clinical sensitivity and specificity, which could provide valuable information for the detection of many diseases and elucidation of pathology. It is still a great challenge to detect the phosphoproteins and phosphopeptides from complex biological samples directly due to reversibility of protein phosphorylation and the extremely low concentrations of phosphoproteins. Nanostructured materials have attracted particular attentions in enrichment, separation, and purification of phosphoproteins/phosphopeptides due to their larger surface area, numerous affinity sites and unique structures. The research subject has become one of research hotspots in phosphoproteomics presently. Various multifunctional nanostructured materials such as core-shell particles with mesoporous affinity shell and magnetic core, hybrids of multiple components and composite affinity materials have been synthesized for selective enrichment and fast purification of phosphoproteins/phosphopeptides. In this review, we are focusing on recent advancements of nanostructured materials for phosphoprotein/phosphopeptide enrichment and purification prior to MS analysis. Definition, structure characteristic, unique physicochemical properties and potential in bio-separation of the nanostructured materials are first introduced. Subsequently, the related research background on phosphoproteomic studies in proteomics using mass spectrometric strategies in combination with phosphospecific enrichment techniques is briefly presented. After that, two types of affinity enrichment mechanisms to phosphoproteins/phosphopeptides are compactly discussed. Next, mesoporous, hybrid, and composite nanostructured materials for enrichment of phosphoproteins/phosphopeptides as well as application of multifunctional nanostructured materials in phosphoproteomics are summarized in detail. Finally, some unsolved problems and a brief perspective and outlook on phosphopeptide enrichment are proposed.

Contents
1 Introduction
2 Protein phosphorylation and enrichment detection of phosphoproteins/phosphopeptides
2.1 Protein phosphorylation
2.2 Enrichment detection of phosphoproteins/phosphopeptides
3 Mechanism of affinity enrichment of phosphoproteins/phosphopeptides
4 Mesoporous nanostructured materials for enrichment of phosphoproteins/phosphopeptides
4.1 Mesoporous SiO2 nanostructured materials with immobilized affinity material
4.2 Mesoporous nanostructured materials doped with affinity material
4.3 Mesoporous metal oxide nanostructured materials
5 Composite nanostructured materials for enrichment of phosphoproteins/phosphopeptides
5.1 Magnetic core-shell nanostructured materials
5.2 Mesoporous magnetic nanostructured materials
5.3 Hybrid composite nanostructured materials
6 Application of multifunctional nanostructured materials in phosphoproteomics
6.1 Multifunctional nanostructured materials for fast proteolysis and phosphopeptide enrichment
6.2 Multifunctional nanostructured materials for enrichment and identification of phosphopeptides
6.3 Multifunctional nanostructured materials for enrichment of various biomolecules
6.4 Nanostructured materials modified target plate for on-plate enrichment and analysis of phosphopeptides
7 Conclusions and outlook

中图分类号: 

()

[1] 张立德(Zhang L D), 牟季美(Mu J M). 纳米材料和纳米结构(Nanomaterial and Nanostructure), 北京: 科学出版社(Beijing: Science Press), 2002. 411
[2] 柏兆方(Bai Z F), 王红霞(Wang H X). 分析化学(Analytical Chemistry), 2009, 9: 1382-1389
[3] 毕炜(Bi W), 王京兰(Wang J L), 钱小红(Qiang X H), 蔡耘(Cai Y). 生物技术通讯(Letters in Biotechnology), 2007, 18: 515-518
[4] 李鹏章(Li P Z), 王粤博(Wang Y B). 化学进展(Progress in Chemistry), 2012, 24: 1785-1793
[5] Salovska B, Tichy A, Rezacova M, Vavrova J, Novotna E. Rev. Anal. Chem., 2012, 31: 29-41
[6] Dunn J D, Reid G E, Bruening M L. Mass. Spectrom. Rev., 2010, 29: 29-54
[7] Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori S. Nat. Struct. Mol. Biol., 2009, 16: 1026-1035
[8] Yang X, Ongusaha P P, Miles P D, Havstad J C, Zhang F, So W V, Kudlow J E, Michell R H, Olefsky J M, Field S J, Evans R M. Nature, 2008, 451: 964-969
[9] Sickmann A, Meyer H E. Proteomics, 2001, 1: 200-206
[10] Grimsrud P A, Swaney D L, Wenger C D, Beauchene N A, Coon J J. ACS Chem. Biol., 2010, 5: 105-119
[11] Ubersax J A, Ferrell J E Jr. Nat. Rev. Mol. Cell Bio., 2007, 8: 530-541
[12] Johnson L N. Biochem. Soc. T., 2009, 37: 627-641
[13] Manni S, Mauban J H, Ward C W, Bond M. J. Biol. Chem., 2008, 283: 24145-24154
[14] Diamandis E P. J. Proteome Res., 2006, 5: 2079-2082
[15] Harsha H C, Pandey A. Mol. Oncology., 2010, 4: 482-495
[16] Lopez E, Lopez I, Ferreira A, Sequi J. Proteome Sci., 2011, 9: 27
[17] Yates J R, Ruse C I, Nakorchevsky A. Annu. Rev. Biomed. Eng., 2009, 11: 49-79
[18] Tichy A, Salovska B, Rehulka P, Klimentova J, Vavrova J, Stulik J, Hernychova L. J. Proteomics, 2011, 74: 2786-2797
[19] Guerrera I C, Predic-Atkinson J, Kleiner O, Soskic V, Godovac-Zimmermann J. J. Proteome Res., 2005, 4: 1545-1553
[20] Aryal U K, Olson D J, Ross A R. J. Biomol. Tech., 2008, 19: 296-310
[21] Porath J, Carlsson J A N, Olsson I, Belfrage G. Nature, 1975, 258: 598-599
[22] Lai A C Y, Tsai C F, Hsu C C, Sun Y N, Chen Y J. Rapid Commun. Mass Sp., 2012, 26: 2186-2194
[23] Hsu J L, Wang L Y, Wang S Y, Lin C H, Ho K C, Shi F K, Chang I F. Proteome Sci., 2009, 7: art. no. 42
[24] Rinalducci S, Larsen M, Mohammed S, Zolla L. J. Proteome Res., 2006, 5: 973-982
[25] Kweon H K, Hakansson K. Anal. Chem., 2006, 78: 1743-1749
[26] Chen C T, Chen Y C. J. Mass Spectrom., 2008, 43: 538-541
[27] Blacken G R, Sadílek M, Ture ek F. J. Mass Spectrom., 2008, 43: 1072-1080
[28] Ficarro S B, Parikh J R, Blank N C, Marto J A. Anal. Chem., 2008, 80: 4606-4613
[29] Leitner A, Sturm M, Lindner W. Anal. Chim. Acta, 2011, 703: 19-30
[30] Pan C, Ye M, Liu Y, Feng S, Jiang X, Han G, Zhu J, Zou H. J. Proteome Res., 2006, 5: 3114-3124
[31] Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H. Anal. Chem., 2009, 81: 94-104
[32] Wang P, Zhao L, Wu R, Zhong H, Zou H, Yang J, Yang Q. J. Phys. Chem. C, 2009, 113: 1359-1366
[33] Han G, Ye M, Zou H. Analyst, 2008, 133: 1128-1138
[34] Wan J, Qian K, Qiao L, Wang Y, Kong J, Yang P, Liu B, Yu C. Chem. Eur. J., 2009, 15: 2504-2508
[35] Wan H, Yan J, Yu L, Zhang X, Xue X, Li X, Liang X. Talanta, 2010, 82: 1701-1707
[36] Guo W C, Wan J J, Qian K, Yu C Z, Kong J L, Yang P Y, Liu B H. Sci. China Chem., 2011, 54: 1327-1333
[37] Zhang Y, Chen C, Qin H Q, Wu R A, Zou H F. Chem. Commun., 2010, 2271-2273
[38] Xu B, Zhou L, Wang F, Qin H, Zhu J, Zou H. Chem. Commun., 2012, 1802-1804
[39] Nelson C A, Szczech J R, Xu Q, Lawrence M J, Jin S, Ge Y. Chem. Commun., 2009, 6607-6609
[40] Nelson C A, Szczech J R, Dooley C J, Xu Q, Lawrence MJ, Zhu H, Jin S, Ge Y. Anal. Chem., 2010, 82: 7193-7201
[41] Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D. J. Colloid Interf. Sci., 2008, 318: 315-321
[42] Lu Z, Ye M, Li N, Zhong W, Yin Y. Angew. Chem. Int. Ed., 2010, 49: 1862-1866
[43] Lu Z, Duan J, He L, Hu Y, Yin Y. Anal. Chem., 2010, 82: 7249-7258
[44] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem. Eur. J., 2012, 18: 2014-2020
[45] Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Adv. Mater., 2006, 18: 3289-3293
[46] Tan F, Zhang Y, Mi W, Wang J, Wei J, Cai Y, Qian X. J. Proteome Res., 2008, 7: 1078-1087
[47] Li Y, Qi D, Deng C, Yang P, Zhang X. J. Proteome Res., 2008, 7: 1767-1777
[48] Qi D, Mao Y, Lu J, Deng C, Zhang X. J. Chromatogr. A, 2010, 1217: 2606-2617
[49] Ma W, Zhang Y, Li L, Zhang Y, Yu M, Guo J, Lu H, Wang C. Adv. Funct. Mater., 2012, DOI: 10.1002/adfm. 201201364
[50] Zhang L, Zhao Q, Liang Z, Yang K, Sun L, Zhang L, Zhang Y. Chem. Commun., 2012, 6274-6276
[51] Chen C T, Chen Y C. Anal. Chem., 2005, 77: 5912-5919
[52] Lin H Y, Chen W Y, Chen Y C. J. Biomed. Nanotechnol., 2009, 5: 215-223
[53] Chen C T, Chen Y C. J. Biomed. Nanotechnol., 2008, 4: 73-79
[54] Lo C Y, Chen W Y, Chen C T, Chen Y C. J. Proteome Res., 2006, 6: 887-893
[55] Chen C T, Chen W Y, Tsai P J, Chien K Y, Yu J S, Chen Y C. J. Proteome Res., 2006, 6: 316-325
[56] Chen W Y, Chen Y C. Anal. Bioanal. Chem., 2010, 398: 2049-2057
[57] Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X. J. Proteome Res., 2008, 7: 2526-2538
[58] Li Y, Lin H, Deng C, Yang P, Zhang X. Proteomics, 2008, 8: 238-249
[59] Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, Deng C, Yang P, Zhang X. J. Chromatogr. A, 2007, 1172: 57-71
[60] Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X. J. Proteome Res., 2007, 6: 4498-4510
[61] Qi D, Lu J, Deng C, Zhang X. J. Phys. Chem. C, 2009, 113: 15854-15861
[62] Qi D, Lu J, Deng C, Zhang X. J. Chromatogr. A, 2009, 1216: 5533-5539
[63] Lu J, Li Y, Deng C. Nanoscale, 2011, 1225-1233
[64] Wu J H, Li X S, Zhao Y, Gao Q, Guo L, Feng Y Q. Chem. Commun., 2010, 9031-9033
[65] Li X S, Su X, Zhu G T, Zhao Y, Yuan B F, Guo L, Feng Y Q. J. Sep. Sci., 2012, 35: 1506-1513
[66] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem. Commun., 2011, 5732-5734
[67] Wang Z G, Cheng G, Liu Y L, Zhang J L, Sun D H, Ni J Z. Small, 2012, 8(22): 3456-3464
[68] Yan J, Li X, Cheng S, Ke Y, Liang X. Chem. Commun., 2009, 2929-2931
[69] Pang H, Lu Q, Gao F. Chem. Commun., 2011, 11772-11774
[70] Lu J, Wang M, Li Y, Deng C. Nanoscale, 2012, 4: 1577-1580
[71] Min Q, Zhang X, Zhang H, Zhou F, Zhu J J. Chem. Commun., 2011, 11709-11711
[72] Qian K, Wan J, Liu F, Girault HH, Liu B, Yu C. ACS Nano, 2009, 3: 3656-3662
[73] Thingholm T E, Jorgensen T J, Jensen O N, Larsen M R. Nat. Protoc., 2006, 1: 1929-1935
[74] Chen C T, Chen Y C. Chem. Commun., 2010, 5674-5676
[75] Woo E M, Fenyo D, Kwok B H, Funabiki H, Chait B T. Anal. Chem., 2008, 80: 2419-2425
[76] Jia W, Andaya A, Leary J A. Anal. Chem., 2012, 84: 2466-2473
[77] Luedtke N W, Schepartz A. Chem. Commun., 2005, 5426-5428
[78] Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X H. J. Mass Spectrom., 2008, 43: 628-632
[79] Wu J H, Xiao K, Zhao Y, Zhang W P, Guo L, Feng Y Q. J. Sep. Sci., 2010, 33: 2361-2368
[80] Cheng G, Liu Y L, Zhang J L, Sun D H, Ni J Z. Anal. Bioanal. Chem., 2012, 404: 763-770
[81] Yan J, Li X, Yu L, Jin Y, Zhang X, Xue X, Ke Y, Liang X. Chem. Commun., 2010, 5488-5490
[82] Cheng G, Wang Z G, Liu Y L, Zhang J L, Sun D H, Ni J Z. Chem. Commun., 2012, 10240-10242
[83] Xu Y, Bruening M L, Watson J T. Anal. Chem., 2004, 76: 3106-3111
[84] Dunn J D, Watson J T, Bruening M L. Anal. Chem., 2006, 78: 1574-1580
[85] Dunn J D, Igrisan E A, Palumbo A M, Reid G E, Bruening M L. Anal. Chem., 2008, 80: 5727-5735
[86] Ibanez A J, Muck A, Svatos A. J. Proteome Res., 2007, 6: 3842-3848
[87] Zhou H, Xu S, Ye M, Feng S, Pan C, Jiang X, Li X, Han G, Fu Y, Zou H. J. Proteome Res., 2006, 5: 2431-2437
[88] Blacken G R, Volny M, Vaisar T, Sadilek M, Turecek F. Anal. Chem., 2007, 79: 5449-5456
[89] Qiao L, Roussel C, Wan J, Yang P, Girault HH, Liu B. J. Proteome Res., 2007, 6: 4763-4769
[90] Lu J, Liu S, Deng C. Chem. Commun., 2011, 5334-5336
[91] Wang H, Duan J, Cheng Q. Anal. Chem., 2011, 83: 1624-1631
[92] Tang L A L, Wang J, Lim T K, Bi X, Lee W C, Lin Q, Chang Y T, Lim C T, Loh K P. Anal. Chem., 2012, 84: 6693-6700

[1] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[2] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[3] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[4] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[5] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[6] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[7] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[8] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[9] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[10] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[11] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[12] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[13] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[14] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[15] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.