English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1862-1870 前一篇   后一篇

所属专题: 计算化学

• 综述与评论 •

离子液体的分子模拟与量化计算

郑燕升*, 卓志昊, 莫倩, 李军生   

  1. 广西工学院生物与化学工程系 柳州 545006
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 郑燕升 E-mail:zhyansh88@163.com
  • 基金资助:

    广西自然科学基金项目(2010GXNSFA013134)资助

Molecular Simulation and Quantum Chemistry Calculation of Ionic Liquids

Zheng Yansheng*, Zhuo Zhihao, Mo Qian, Li Junsheng   

  1. Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou, 545006
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-09-24 Published:2011-09-02

分子模拟方法是研究离子液体结构与性质关系非常有效的方法,可以从分子间相互作用出发研究离子液体的微观结构、热力学和动力学性质;量子化学计算则在分子、电子水平上对离子液体的结构、性能及催化机理进行理论研究。本文综述了分子模拟方法应用于离子液体体系的研究进展,重点介绍了利用分子动力学模拟和量子化学计算方法对不同离子液体进行研究,获得离子液体的结构性质、光谱性质(红外光谱、拉曼光谱)及离子液体催化反应机理等,为探讨离子液体结构-性质的关系、离子对的作用方式、催化反应活性中心、反应途径、反应活化能、振动模式和频率以及设计功能性离子液体提供理论导向。

Molecular simulation is an effective method to study microstructure, thermodynamics and dynamic properties of ionic liquids from the molecule interaction.While quantum chemistry calculations can be used to study structure, properties and catalysis mechanism of ionic liquids theoretically at the molecular and electronic level.In this paper, the recent progress of molecular simulation applied in ionic liquids was reviewed; the studiees of different ionic liquids using molecular dynamic simulation and quantum chemistry calculations to obtain the structural properties, spectral properties (infrared spectrum,Raman spectrum) and reaction mechanisms of ionic liquids are mainly introduced.It aims to provide some theoretical advises for the research of structure-property relationship,interaction of ion pair,catalytic acivity sity,reaction pathway,activation energy, vibrational frequencies and design of ionic liquids.

Contents
1 Introduction
2 Molecular simulation of ionic liquids
3 Quantum chemical calculation of ionic liquids
3.1 Structural properties
3.2 Spectral properties
3.3 Reaction mechanism
4 Perspective

中图分类号: 

()

[1] Olivier-Bourbigou H, Magna L, Morvan D.Applied Catalysis A: General, 2010, 373: 1-56
[2] Shibayama W, Narita A, Matsumi N, Ohno H.J.Organomet.Chem., 2009, 694: 1642-1645
[3] Galinski M, Lewandowski A, Stepniak I.Electrochim.Acta, 2006, 51: 5567-5580
[4] Parvulescu V I, Hardacre C.Chem.Rev., 2007, 107: 2615-2665
[5] Plechkova N V, Seddon K R.Chem.Soc.Rev., 2008, 37: 123-150
[6] Rivera-Rubero S, Baldelli S.J.Phys.Chem.B, 2006, 110: 15499-15505
[7] Su B M, Zhang S G, Zhang Z.J.Phys.Chem.B, 2004, 108: 19510-19517
[8] Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper A K.J.Phys.Chem.B, 2005, 109: 1593-1598
[9] Hardacre C, Holbrey J D, McMath S E J, Bowron D T, Soper A K.J.Chem Phys., 2003, 118: 273-278
[10] Katayanagi H, Hayashi S, Hamaguchi H, Nishikawa K.Chem.Phys.Lett., 2004, 392: 460-464
[11] Umebayashi Y, Hamano H, Tsuzuki S, Lopes J N C, Pdua A A H, Kameda Y, Kohara S, Yamaguchi T, Fujii K, Ishiguro S I.J.Phys.Chem.B, 2010, 114, 11715-11724
[12] Halling M D, Bell J D, Pugmire R J, Grant D M, Miller J S.J.Phys.Chem.A, 2010, 114: 6622-6629
[13] Balevicius V, Gdaniec Z, Aidas K, Tamuliene J.J.Phys.Chem.A, 2010, 114: 5365-5371
[14] Zhang Q G, Wang N N, Yu Z W.J.Phys.Chem.B, 2010, 114: 4747-4754
[15] Zafarani M T, Shekarri H.J.Chem.Thermodyn., 2005, 37: 1029-1035
[16] Banerjee T, Singh M K, Sahoo R K, Khanna A.Flud Phase Equilibria, 2005, 234: 64-76
[17] Yokozeki A, Mark B S.AIChE Journal, 2006, 52: 3952-3957
[18] Kim Y S, Jang J H.Fluid Phase Equilibria., 2007, 256: 70-74
[19] Freire M G, Santos L M N B F, Marrucho I M, Coutinho J A P.Fluid Phase Equilib., 2007, 255: 167-178
[20] Freire M G, Neves C M S S, Carvalho P J, Gardas R L, Fernandes A M, Marrucho I M, Santos L M N B F, Coutinho J A P.J.Phys.Chem.B, 2007, 111: 13082-13089
[21] Freire M G., Carvalho P J, Gardas R L, Marrucho I M, Santos L M N B F, Coutinho J A P.J.Phys.Chem.B, 2008, 112: 1604-1610
[22] Freire M G., Carvalho P J, Gardas R L, Santos L M N B F, Marrucho I M, Coutinho J A P.J.Chem.Eng.Data, 2008, 53: 2378-2382
[23] Freire M G, Ventura S P M, Santos L M N B F, Marrucho I M, Coutinho J A P.Fluid Phase Equilib., 2008, 268: 74-84
[24] Santiago R S, Santos G R, Aznar M.Fluid Phase Equilib., 2009, 278: 54-61
[25] Neves C M S S, Batista M L S, Cludio A F M, Santos L M N B F, Marrucho I M, Freire M G, Coutinho J A P.J.Chem.Eng.Data, 2010, 55: 5065-5073
[26] Anantharaj R, Banerjee T.Ind.Eng.Chem.Res., 2010, 49: 8705-8725
[27] Mohanty S, Banerjee T, Mohanty K.Ind.Eng.Chem.Res., 2010, 49: 2916-2925
[28] 郑燕升(Zheng Y S), 莫倩(Mo Q), 刘昭明(Liu Z M).化学进展(Progress in Chemistry), 2009, 21(9): 1772-1781
[29] 张锁江(Zhang S J), 姚晓倩(Yao X Q), 刘晓敏(Liu X M), 王金泉(Wang J Q).化学进展(Progress in Chemistry), 2009, 21(11): 2465-2473
[30] Hanke C G, Price S L, Lynden-Bell R M.Mol.Phys., 2001, 99(10): 801-809
[31] 郑燕升(Zheng Y S), 莫倩(Mo Q), 孟陆丽(Meng L L), 程谦伟(Cheng Q W).化学进展(Progress in Chemistry), 2009, 21(7/8): 1427-1433
[32] Lynden-Bell R.Phys.Chem.Chem.Phys., 2010, 12: 1733-1740
[33] Krekeler C, Schmidt J, Dommert F, Zhao Y Y, Berger R, Holm C, Delle L.Phys.Chem.Chem.Phys., 2010, 12: 1817-1821
[34] Bowron D T, Agostino C D, Gladden L F, Hardacre C, Holbrey J D, Lagunas M C, McGregor J, Mantle M D, Mullan C L, Youngs T G A.J.Phys.Chem.B, 2010, 114: 7760-7768
[35] Chen T, Chidambaram M, Liu Z P, Smit B, Bell A T.J.Phys.Chem.B, 2010, 114: 5790-5794
[36] Aparicio S, Alcalde R, Atilhan M.J.Phys.Chem.B, 2010, 114: 5795-5809
[37] Singh R, Monk J, Hung F R.J.Phys.Chem.C, 2010, 114: 15478-15485
[38] Liu H, Sale K L, Holmes B M, Simmons B A, Singh S.J.Phys.Chem.B, 2010, 114: 4293-4301
[39] Seduraman A, Klähn M, Wu P.CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry., 2009, 33: 605-613
[40] Shim Y, Kim H J.J.Phys.Chem.B, 2010, 114: 10160-10170
[41] 王伟彬(Wang W B), 银建中(Yin J Z), 孙丽华(Sun L H), 冯恩民(Feng E M).物理化学学报(Acta.Phys.Chim.Sin.), 2009, 25(11): 2291-2295
[42] Perez-Blanco M E, Maginn E J.J.Phys.Chem.B, 2010, 114: 11827-11837
[43] Bülhl M, Chaumont A, Schurhammer R, Wipff G.J.Phys.Chem.B, 2005, 109: 18591-18599
[44] Del Pópolo M G, Lynden-Bell R M, Kohanoff J.J.Phys.Chem.B, 2005, 109: 5895-5910
[45] Del Pópolo M G, Kohanoff J, Lynden-Bell R M.J.Phys.Chem.B, 2006, 110: 8798-8803
[46] Bhargava B L, Balasubramanian S.Chem.Phys.Lett., 2006, 417: 486-491
[47] Krekeler C, Schmidt J, Zhao Y Y, Qiao B, Berger R, Holm C, Site L D.J.Chem.Phys., 2008, 129: 174503-174509
[48] Gordon M S, Mullin J M, Pruitt S R, Roskop L B, Slipchenko L V, Boatz J A.J.Phys.Chem.B, 2009, 113: 9646-9663
[49] Schmidt J, Krekeler C, Dommert F, Zhao Y Y, Berger R, Delle Site L, Holm C.J.Phys.Chem.B, 2010, 114: 6150-6155
[50] Bülhl M, Chaumont A, Schurhammer R, Wipff G.J.Phys.Chem.B, 2005, 109: 18591-18599
[51] Angenendt K, Johansson P.J.Phys.Chem.C, 2010, 114: 20577-20582
[52] Sun H, Qiao B, Zhang D J, Liu C B.J.Phys.Chem.A, 2010, 114: 3990-3996
[53] Dymek J C, Grossie D A, Fratini A V, Adams W W.J.Mole.Stru., 1989, 213: 25-34
[54] Meng Z, Dolle A, Carper W R.J.Mole.Stru., 2002, 585: 119-128
[55] Umebayashi Y, Fujimori T, Sukizaki T, Asada M, Fujii K, Kanzaki R, Ishiguro S.J.Phys.Chem.A, 2005, 109: 8976-8982
[56] Turner E A, Pye C C, Singer R D.J.Phys.Chem.A, 2003, 107: 2277-2288
[57] Hunt P A, Kirchner B, Welton T.Chem.Eur.J., 2006, 12: 6762-6775
[58] Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciliano T.J.Phys.Chem.B, 2007, 111: 598-605
[59] Kiefer J, Pye C C.J.Phys.Chem.A, 2010, 114: 6713-6720
[60] Emel'yanenko V N, Verevkin S P, Heintz A.J.Phys.Chem.B, 2009, 113: 9871-9876
[61] Ghatee M H, Moosavi F, Zolghadr A R, Jahromi R.Ind.Eng.Chem.Res., 2010, 49: 12696-12701
[62] Kroon M C, Buijs W, Peters C J.Thermochimica Acta, 2007, 465: 40-47
[63] Yu G, Zhang S J.Fluid Phase Equilib., 2007, 255: 86-92
[64] 万辉(Wan H), 王小露(Wang X L), 管国锋(Guan G F).高等学校化学学报 (Chemical Journal of Chinese Universities), 2009, 30(8): 1615-1620
[65] 王小露(Wang X L), 万辉(Wan H), 管国锋(Guan G F).物理化学学报( Acta Phys.Chim.Sin.), 2008, 24(11): 2077-2082
[66] Zhang Y, Chen X Y, Wang H J, Diao K S, Chen J M.J.Mole.Stru.: THEOCHEM, 2010, 952: 16-24
[67] Shirota H, Wishart J F, Castner E W.J.Phys.Chem.B, 2007, 111: 4819-4829
[68] Endo T, Kato T, Nishikawa K.J.Phys.Chem.B, 2010, 114: 9201-9208
[69] Akai N, Kawai A, Shibuya K.J.Phys.Chem.A, 2010, 114: 12662-12666
[70] Xiao D, Hines L G, Holtz M W, Song K, Bartsch R A, Quitevis E L.Chemical Physics Letters, 2010, 497: 37-42
[71] Dieter K M, Dymek C J, Heimer N E, Rovang J W, Wilkes J S.J.Am.Chem.Soc., 1988, 110: 2722-2726
[72] Sitze M S, Schreiter E R, Patterson E V, Freeman R G.Inorg.Chem., 2001, 40: 2298-2304
[73] Talaty E R, Raja S, Storhaug V J, Dolle A, Carper W R.J.Phys.Chem.B, 2004, 108: 13177-13184
[74] Heimer N E, Del Sesto R E, Meng Z Z, Wilkes J S, Robert W.J.Mole.Liqu., 2006, 124: 84-95
[75] Fujimori T, Fujii K, Kanzaki R, Chiba K, Yamamoto H, Umebayashi Y, Ishiguro S I.J.Mole.Liqu., 2007, 131: 216-224
[76] Shukla M, Srivastava N, Saha S.J.Mole.Stru., 2010, 975: 349-356
[77] Berg R W, Riisager A, Van Buu O N, Kristensen S B, Fehrmann R, Harris P, Brunetti A C.J.Phys.Chem.A, 2010, 114: 13175-13181
[78] Carper W R, Langenwalter K, Nooruddin N S, Kullman M J, Gerhard D, Wasserscheid P.J.Phys.Chem.B, 2009, 113: 2031-2041
[79] Illner P, Zahl A, Puchta R, Hommes N V E, Wasserscheid P, Eldik R V.J.Org.Chem., 2005, 690: 3567-3576
[80] Gui J Z, Liu D, Sun Z L, Liu D S, Min D, Song B, Peng X L.Journal of Molecular Catalysis A: Chemical, 2010, 331: 64-70
[81] Petrovi Dc' Z D, Simijonovi Dc' D, Petrovi Dc' V P, Markovi Dc' S.Journal of Molecular Catalysis A: Chemical, 2010, 327: 45-50
[82] 蒲敏(Pu M), 刘坤辉(Liu K H), 李会英(Li H Y), 陈标华(Chen B H).物理化学学报(Acta Phys.Chim.Sin.), 2004, 20(8): 826-830
[83] 蒲敏(Pu M), 陈标华(Chen B H), 李会英(Li H Y), 刘坤辉(Liu K H).物理化学学报(Acta Phys.Chim.Sin.), 2005, 21(4): 383-387
[84] Sun H, Zhang D J, Wang F, Liu C.J.Phys.Chem.A, 2007, 111: 4535-4541
[85] Sun H, Zhang D.J.Phys.Chem.A, 2007, 111: 8036-8043
[86] Bessac F, Maseras F.J.Comput.Chem., 2008, 29: 892-899
[87] Wei X F, Zhang D J, Zhang C Q.International Journal of Quantum Chemistry, 2009, 111(5): 1056-1062
[88] Nie X W, Liu X, Gao L, Liu M, Song C S, GuoX W.Ind.Eng.Chem.Res., 2010, 49: 8157-8163
[89] Acevedo O.Journal of Molecular Graphics and Modelling, 2009, 28: 95-101
[90] 李学良(Li X L), 陈洁洁(Chen J J), 罗梅(Luo M), 陈祥迎(Chen X Y), 李培佩(Li P P).物理化学学报(Acta Phys.Chim.Sin.), 2010, 26(5): 1364-1372

[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[6] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[9] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[10] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[11] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[12] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[13] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[14] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[15] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
阅读次数
全文


摘要

离子液体的分子模拟与量化计算