English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 477-486 前一篇   后一篇

• 综述与评论 •

质子型可逆固体氧化物电池的材料与反应机理

何非, 彭冉冉*, 杨上峰   

  1. 中国科学技术大学材料科学与工程系 中国科学院能量转换材料重点实验室 合肥 230026
  • 收稿日期:2010-09-01 修回日期:2010-12-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:pengrr@ustc.edu.cn E-mail:pengrr@ustc.edu.cn

Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism

He Fei, Peng Ranran*, Yang Shangfeng   

  1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • Received:2010-09-01 Revised:2010-12-01 Online:2011-03-24 Published:2011-01-26

质子型可逆固体氧化物电池(reversible solid oxide cells based on proton conducting electrolyte, H-RSOC)是一类可用于实现可再生电能的储存、转换和再利用的高效能量转换装置。本文根据H-RSOC的运行特点,概括介绍了H-RSOC电极、电解质材料的选择要求及新型材料研究进展,并着重介绍了H-RSOC的空气极电化学反应机理,以进一步优化和发展适宜的空气极材料和微结构,促进H-RSOC的实际应用。

Reversible solid oxide cells based on proton conducting electrolytes (H-RSOC) are regarded as efficient energy conversion devices for practical application of renewable energy, such as solar energy and wind energy to smooth out their fluctuation and intermittence. In this paper, the requirements and development of electrode and electrolyte materials for H-RSOC are briefly reviewed, and especially, the reaction mechanisms of air electrode with respect to their demand on air electrode materials are summarized. Working in solid oxide fuel cells (SOFC) mode, the migration of protons to triple phase boundaries (TPBs) and the surface diffusion of oxygen ions to TPBs are supposed to be the rate limiting steps, which favors the composite consisting of oxygen ion-electron mixed conductors and proton conductors as air electrode. While in solid oxide electrolysis cells (SOEC) mode, the transferring of protons decomposed from water to TPBs and the protons at TPBs transferring to the electrolyte are deemed as the rate limiting steps, and novel proton-electron mixed conductor might be the best choice of such air electrode. That’s because that the proton transfer in such proton-electron mixed conducting air electrode would be greatly improved for their high volume ratio (~60%) and for their greatly enlarged electro active sites, which expands from traditional TPBs in composite electrodes to the interface of gas phase/ mixed conducting air electrode.

中图分类号: 

()

[1] Elangovan S, Hartvigsen J J. International Journal of Applied Ceramic Technology, 2007, 4: 109-119
[2] Stambouli A B, Traversa E. Renewable & Sustainable Energy Reviews, 2002, 6: 433-455
[3] Liang M D, Yu B, Wen M F, Chen J, Xu J M, Zhai Y C. J. Power Sources, 2009, 190: 341-345
[4] Laguna-Bercero M A, Skinner S J, Kilner J A. J. Power Sources, 2009, 192: 126-131
[5] Kharton V V, Marques F M B, Atkinson A. Solid State Ionics, 2004, 174: 135-149
[6] Kreuer K D. Annual Review of Materials Research, 2003, 33: 333-359
[7] Jensen S H, Mogensen M. 19th World Energy Congress, 2004
[8] Hashimoto S, Liu Y, Mori M, Funahashi Y, Fujishiro Y. Int. J. Hydrogen Energy, 2009, 34: 1159-1165
[9] Jensen S H, Larsen P H, Mogensen M. Int. J. Hydrogen Energy, 2007, 32: 3253-3257
[10] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2008, 33: 2337-2354
[11] Fujiwara S, Kasai S, Yamauchi H, Yamada K, Makino S, Matsunaga K, Yoshino M, Kameda T, Ogawa T, Momma S, Hoashi E. Prog. Nucl. Energy, 2008, 50: 422-426
[12] Stoots C, O'Brien J, Hartvigsen J. Int. J. Hydrogen Energy, 2009, 34: 4208-4215
[13] Ni M, Leung M K H, Leung D Y. J. Power Sources, 2008, 177: 369-375
[14] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2007, 32: 2305-2313
[15] Kobayashi T, Abe K, Ukyo Y, Matsumoto H. Solid State Ionics, 2001, 138: 243-251
[16] Peng R R, Wu Y, Yang L Z, Mao Z Q. Solid State Ionics, 2006, 177: 389-393
[17] Xie K, Yan R Q, Chen X R, Dong D H, Wang S L, Liu X Q, Meng G Y. J. Alloys Compd., 2009, 472: 551-555
[18] Azad A K, Irvine J T S. Solid State Ionics, 2007, 178: 635-640
[19] Iwahara H, Esaka T, Uchida H, Maeda N. Solid State Ionics, 1981, 3-4: 359-363
[20] Stuart P A, Unno T, Kilner J A, Skinner S J. Solid State Ionics, 2008, 179: 1120-1124
[21] Sakai T, Matsushita S, Matsumoto H, Okada S, Hashimoto S, Ishihara T. Int. J. Hydrogen Energy, 2009, 34: 56-63
[22] Phair J W, Badwal S P S. Ionics, 2006, 12: 103-115
[23] Bohn H G, Schober T. J. Am. Ceram. Soc., 2000, 83: 768-772
[24] Kreuer K D. Solid State Ionics, 1999, 125: 285-302
[25] Taniguchi N, Nishimura C, Kato J. Solid State Ionics, 2001, 145: 349-355
[26] Serra J M, Meulenberg W A. J. Am. Ceram. Soc., 2007, 90: 2082-2089
[27] Norby T. Solid State Ionics, 1999, 125: 1-11
[28] Tao S W, Irvine J T S. Adv. Mater., 2006, 18: 1581-1585
[29] Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E. Solid State Ionics, 2008, 179: 558-564
[30] Zhong Z M. Solid State Ionics, 2007, 178: 213-221
[31] Fabbri E, Pergolesi D, D'Epifanio A, Di Bartolomeo E, Balestrino G, Licoccia S, Traversa E. Energy & Environmental Science, 2008, 1: 355-359
[32] Barison S, Battagliarin M, Cavallin T, Doubova L, Fabrizio M, Mortalo C, Boldrini S, Malavasi L, Gerbasi R. J. Mater. Chem., 2008, 18: 5120-5128
[33] Barison S, Battagliarin M, Cavallin T, Daolio S, Doubova L, Fabrizio M, Mortalo C, Boldrini S, Gerbasi R. Fuel Cells, 2008, 8: 360-368
[34] Katahira K, Kohchi Y, Shimura T, Iwahara H. Solid State Ionics, 2000, 138: 91-99
[35] Zuo C D, Zha S W, Liu M L, Hatano M, Uchiyama M. Adv. Mater., 2006, 18: 3318-3320
[36] Wang H, Peng R R, Wu X F, Hu J L, Xia C R. J. Am. Ceram. Soc., 2009, 92: 2623-2629
[37] Bi L, Zhang S Q, Fang S M, Tao Z T, Peng R R, Liu W. Electrochem. Commun., 2008, 10: 1598-1601
[38] Du Y, Nowick A S. Solid State Ionics, 1996, 91: 85-91
[39] Schober T, Krug F, Schilling W. Solid State Ionics, 1997, 97: 369-373
[40] Schober T, Bohn H H, Mono T, Schilling W. Solid State Ionics, 1999, 118: 173-178
[41] Bohn H G, Schober T, Mono T, Schilling W. Solid State Ionics, 1999, 117: 219-216
[42] Du Y, Nowick A S. Solid State Ionics, 1996, 91: 85-91
[43] Valkenberg S, Bohn H G, Schilling W. Solid State Ionics, 1997, 97: 511-515
[44] Ma G, Zhang F, Zhu J, Meng G. Chem. Mater., 2006, 18: 6006-6011
[45] Omata T, Ikeda K, Tokashiki R, Otsuka-Yao-Matsuo S. Solid State Ionics, 2004, 167: 389-397
[46] Omata T, Okuda K, Tsugimoto S, Otsuka-Matsuo-Yao S. Solid State Ionics, 1997, 104: 249-258
[47] Shimura T, Komori M, Iwahara H. Solid State Ionics, 1996, 86/88: 685-689
[48] Endo A, Ihara M, Komiyama H, Yamada K. Solid State Ionics, 1996, 86-88: 1191-1195
[49] Jiang S P. Journal of Materials Science, 2008, 43: 6799-6833
[50] Ishihara T, Kudo T, Matsuda H, Takita Y. J. Electrochem. Soc., 1995, 142: 1519-1524
[51] Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O. J. Electrochem. Soc., 1987, 134: 2656-2661
[52] Wu T Z, Peng R R, Xia C R. Solid State Ionics, 2008, 179: 1505-1508
[53] Hui Z, Michele P. J. Mater. Chem., 2002, 12: 3787-3791
[54] Tao Z T, Bi L, Yan L T, Sun W P, Zhu Z W, Peng R R, Liu W. Electrochem. Commun., 2009, 11: 688-690
[55] Tao Z, Bi L, Zhu Z, Liu W. J. Power Sources, 2009, 194: 801-804
[56] Peng R R, Wu T Z, Liu W, Liu X Q, Meng G Y. J. Mater. Chem., 2010, 20: 6218-6225
[57] Taillades G, Dailly J, Taillades-Jacquin M, Mauvy F, Essouhmi A, Marrony M, Lalanne C, Fourcade S, Jones D J, Grenier J C, Roziere J. Fuel Cells, 2010, 10: 166-173
[58] Wu T Z, Zhao Y Q, Peng R R, Xia C R. Electrochim. Acta, 2009, 54: 4888-4892
[59] Wu X, Wang H, Peng R, Xia C, Meng G. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.05.053
[60] He F, Song D, Peng R R, Meng G Y, Yang S F. J. Power Sources, 2010, 195: 3359-3364
[61] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2008, 33: 4040-4047
[62] He F, Wu T Z, Peng R R, Xia C R. J. Power Sources, 2009, 194: 263-268
[63] Wu T Z, Rao Y Y, Peng R R, Xia C R. J. Power Sources, 2010, 195: 5508-5513

[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[4] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[5] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[6] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[7] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[8] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[9] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[10] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[11] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.
[12] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[13] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
[14] 史菁菁, 郭星, 陈人杰, 吴锋. 柔性电池的最新研究进展[J]. 化学进展, 2016, 28(4): 577-588.
[15] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.