English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 577-588 DOI: 10.7536/PC151002 前一篇   后一篇

• 综述与评论 •

柔性电池的最新研究进展

史菁菁1, 郭星1, 陈人杰1,2*, 吴锋1,2   

  1. 1. 北京理工大学化工与环境学院 环境科学与工程北京市重点实验室 北京 100081;
    2. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2015-10-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 陈人杰 E-mail:chenrj@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21373028), 中央在京高校重大成果转化项目和北京市科技计划项目(No.D151100003015001)资助

Recent Progress in Flexible Battery

Shi Jingjing1, Guo Xing1, Chen Renjie1,2*, Wu Feng1,2   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering & Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center for High Technology Green Materials, Beijing 100081, China
  • Received:2015-10-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21373028), the Major Achievements Transformation Project for Central University in Beijing, and Beijing Science and Technology Project(No.D151100003015001).
柔性电池作为新型柔性电子设备的关键部件,得到越来越多的关注.近年来,柔性锂离子电池取得了实质性的发展,并在卷曲式显示器、触摸屏、可穿戴动力传感器和可植入医疗装置等方面得到应用.本文主要介绍柔性锂离子电池的发展现状,分别从集流体、电极材料和电解质三部分进行阐述,特别介绍拉伸性能的实现途径,根据其不同的结构特点,可以分为波形结构、点阵互联结构、纺织结构、折纸结构和电缆式结构,并提出将柔性材料与新型结构相结合可以促进柔性电池发展.同时,也对其他柔性电池体系,如锂硫电池、燃料电池和太阳能电池等的最新发展进行简单概述.最后,对目前柔性电池的发展过程中存在的问题进行了总结,并对其未来的发展方向与面临的挑战进行展望.
Flexible batteries have attracted more and more attentions as the key component for the flexible electronic devices. Recently, flexible lithium-ion batteries have been developed quickly and applied to roll-up displays, touch screens, wearable sensors and implantable medical devices. In this review, we mainly focus on recent research of flexible lithium-ion batteries, and summarize how to realize flexibility of each component of the lithium-ion batteries, including current collectors,electrode materials and solid electrolytes. In addition, the structural design strategies for the realization of stretchable character are introduced,which can be divided into Wave-Structural Configuration, Interconnect-Island Mesh Configuration, Textile Structural Configuration, Origami Design Configuration and Cable-Type Configuration according to the different structural features. In order to promote the flexibility of the batteries to a large extent, we propose that the flexible materials should combine with novel stretchable structures. At the same time,we make a brief overview on the latest development for other flexible battery systems, such as lithium-sulfur battery, fuel cell and solar cell. Finally, the existing issues of flexible lithium-ion batteries during their development processes, the forecast the prospects and challenges toward the practical applications of flexible lithium-ion batteries in electronic devices are summarized.

Contents
1 Introduction
2 Flexible lithium batteries
2.1 Collector
2.2 Electrode material
2.3 Flexible solid electrolyte
2.4 Design of stretchable structure
3 Other flexible battery systems
3.1 Li-S flexible batteries
3.2 Flexible system of solar cells and fuel cells
4 Prospect of flexible batteries

中图分类号: 

()
[1] Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.
[2] Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.
[3] Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22(8): E28.
[4] Cheng F, Liang J, Tao Z, Chen J. Adv. Mater., 2011, 23(15): 1695.
[5] Manthiram A. J. Phys. Chem. Lett., 2011, 2(3): 176.
[6] Kim D H, Viventi J, Amsden J J, Xiao J, Vigeland L, Kim Y S, Blanco J A, Panilaitis B, Frechette E S, Contreras D, Kaplan D L, Omenetto F G, Huang Y, Hwang K C, Zakin M R, Litt B, Rogers J A. Nature Mater., 2010, 9(6): 511.
[7] Gelinck G H, Huitema H E A, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten J B P H, Geuns T C T, Beenhakkers M, Giesbers J B, Huisman B H, Meijer E J, Benito E M, Touwslager F J, Marsman A W, van Rens B J E, de Leeuw D M. Nature Mater., 2004, 3(2): 106.
[8] Nathan A, Ahnood A, Cole M T, Sungsik L, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Daping C, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G, Milne W I. Proc. IEEE, 2012, 100(Special Centennial Issue): 1486.
[9] Rogers J A, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju V R, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(9): 4835.
[10] Park S, Vosguerichian M, Bao Z. Nanoscale, 2013, 5(5): 1727.
[11] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S. Nature Nanotech., 2010, 5(8): 574.
[12] Nishide H, Oyaizu K. Science, 2008, 319(5864): 737.
[13] Hu L, Cui Y. Energ. Environ. Sci., 2012, 5(4): 6423.
[14] Jeong G, Kim Y U, Kim H, Kim Y J, Sohn H J. Energ. Environ. Sci., 2011, 4(6): 1986.
[15] Choi J Y, Lee D J, Lee Y M, Lee Y G, Kim K M, Park J K, Cho K Y. Adv. Funct. Mater., 2013, 23(17): 2108.
[16] Zhou G, Li F, Cheng H M. Energ. Environ. Sci., 2014, 7(4): 1307.
[17] Hu L, Wu H, La Mantia F, Yang Y, Cui Y. ACS Nano, 2010, 4(10): 5843.
[18] Wang K, Luo S, Wu Y, He X, Zhao F, Wang J, Jiang K, Fan S. Adv. Funct. Mater., 2013, 23(7): 846.
[19] Wan Y, Yang Z, Xiong G, Guo R, Liu Z, Luo H. J. Power Sources, 2015, 294:414.
[20] Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Nature Mater., 2011, 10(6): 424.
[21] Ji H, Zhang L, Pettes M T, Li H, Chen S, Shi L, Piner R, Ruoff R S. Nano Lett., 2012, 12(5): 2446.
[22] Li N, Chen Z, Ren W, Li F, Cheng H M. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(43): 17360.
[23] Lee S W, Gallant B M, Lee Y, Yoshida N, Kim D Y, Yamada Y, Noda S, Yamada A, Shao Horn Y. Energ. Environ. Sci., 2012, 5(1): 5437.
[24] Chew S Y, Ng S H, Wang J, Novák P, Krumeich F, Chou S L, Chen J, Liu H K. Carbon, 2009, 47(13): 2976.
[25] Chen J, Minett A I, Liu Y, Lynam C, Sherrell P, Wang C, Wallace G G. Adv. Mater., 2008, 20(3): 566.
[26] Zhou G, Wang D W, Hou P X, Li W, Li N, Liu C, Li F, Cheng H M. J. Mater. Chem., 2012, 22(34): 17942.
[27] Zhang H X, Feng C, Zhai Y C, Jiang K L, Li Q Q, Fan S S. Adv. Mater., 2009, 21(22): 2299.
[28] Li X, Yang J, Hu Y, Wang J, Li Y, Cai M, Li R, Sun X. Journal of Materials Chemistry, 2012, 22(36): 18847.
[29] Jia X, Chen Z, Suwarnasarn A, Rice L, Wang X, Sohn H, Zhang Q, Wu B M, Wei F, Lu Y. Energy & Environmental Science, 2012, 5(5): 6845.
[30] Luo S, Wang K, Wang J, Jiang K, Li Q, Fan S. Adv. Mater., 2012, 24(17): 2294.
[31] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[32] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotech., 2008, 3(2): 101.
[33] Chen H, Müller M B, Gilmore K J, Wallace G G, Li D. Adv. Mater., 2008, 20(18): 3557.
[34] Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Energ. Environ. Sci., 2011, 4(4): 1277.
[35] Liu F, Song S, Xue D, Zhang H. Adv. Mater., 2012, 24(8): 1089.
[36] Abdelhamid M E, O'Mullane A P, Snook G A. RSC Adv., 2015, 5(15): 11611.
[37] Ito T, Shirakawa H, Ikeda S. Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12(1): 11.
[38] Nigrey P J, MacInnes D, Nairns D P, MacDiarmid A G, Heeger A J. J. Electrochem. Soc., 1981, 128(8): 1651.
[39] Panero S, Prosperi P, Bonino F, Scrosati B, Corradini A, Mastragostino M. Electrochim. Acta, 1987, 32(7): 1007.
[40] Sengodu P, Deshmukh A D. RSC Adv., 2015, 5(52): 42109.
[41] Koo M, Park K I, Lee S H, Suh M, Jeon D Y, Choi J W, Kang K, Lee K J. Nano Lett., 2012, 12(9): 4810.
[42] Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G. Nano Lett., 2012, 12(6): 3005.
[43] Liu B, Wang X, Chen H, Wang Z, Chen D, Cheng Y B, Zhou C, Shen G. Sci. Rep., 2013, 3:1622.
[44] Shen L, Ding B, Nie P, Cao G, Zhang X. Adv. Energy Mater., 2013, 3(11): 1484.
[45] Kil E H, Choi K H, Ha H J, Xu S, Rogers J A, Kim M R, Lee Y G, Kim K M, Cho K Y, Lee S Y. Adv. Mater., 2013, 25(10): 1395.
[46] Ryou M H, Lee Y M, Cho K Y, Han G B, Lee J N, Lee D J, Choi J W, Park J K. Electrochimica Acta, 2012, 60:23.
[47] Chiappone A, Nair J R, Gerbaldi C, Jabbour L, Bongiovanni R, Zeno E, Beneventi D, Penazzi N. J. Power Sources, 2011, 196(23): 10280.
[48] Kim S H, Choi K H, Cho S J, Choi S, Park S, Lee S Y. Nano Lett., 2015, 15(8): 5168.
[49] Ha H J, Kil E H, Kwon Y H, Kim J Y, Lee C K, Lee S Y. Energy & Environmental Science, 2012, 5(4): 6491.
[50] Choi K H, Kim S H, Ha H J, Kil E H, Lee C K, Lee S B, Shim J K, Lee S Y. J. Mater. Chem. A, 2013, 1(17): 5224.
[51] Choi K H, Cho S J, Kim S H, Kwon Y H, Kim J Y, Lee S Y. Adv. Funct. Mater., 2014, 24(1): 44.
[52] Zhang J, Yue L, Hu P, Liu Z, Qin B, Zhang B, Wang Q, Ding G, Zhang C, Zhou X, Yao J, Cui G, Chen L. Sci. Rep., 2014, 4:6272.
[53] Xie K, Wei B. Adv. Mater., 2014, 26(22): 3592.
[54] Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwodiauer R, Graz I, Bauer Gogonea S, Bauer S, Someya T. Nature, 2013, 499(7459): 458.
[55] Wagner S, Bauer S. MRS. Bull., 2012, 37(03): 207.
[56] Gaikwad A M, Zamarayeva A M, Rousseau J, Chu H, Derin I, Steingart D A. Adv. Mater., 2012, 24(37): 5071.
[57] Hu L, Pasta M, Mantia F L, Cui L, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y. Nano Lett., 2010, 10(2): 708.
[58] Kaltenbrunner M, Kettlgruber G, Siket C, Schwödiauer R, Bauer S. Adv. Mater., 2010, 22(18): 2065.
[59] Yan C, Wang X, Cui M, Wang J, Kang W, Foo C Y, Lee P S. Adv. Energy Mater., 2014, 4(5): 1301396.
[60] Chen T, Xue Y, Roy A K, Dai L. ACS Nano, 2014, 8(1): 1039.
[61] Cheng Q, Song Z, Ma T, Smith B B, Tang R, Yu H, Jiang H, Chan C K. Nano Lett., 2013, 13(10): 4969.
[62] Kim D, Shin G, Kang Y J, Kim W, Ha J S. ACS Nano, 2013, 7(9): 7975.
[63] Wang C, Zheng W, Yue Z, Too C O, Wallace G G. Adv. Mater., 2011, 23(31): 3580.
[64] Zang J, Cao C, Feng Y, Liu J, Zhao X. Sci. Rep., 2014, 4:6492.
[65] Bowden N, Brittain S, Evans A G, Hutchinson J W, Whitesides G M. Nature, 1998, 393(6681): 146.
[66] Choi W M, Song J, Khang D Y, Jiang H, Huang Y Y, Rogers J A. Nano Lett., 2007, 7(6): 1655.
[67] Jiang H, Khang D Y, Song J, Sun Y, Huang Y, Rogers J A. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(40): 15607.
[68] Khang D Y, Jiang H, Huang Y, Rogers J A. Science, 2006, 311(5758): 208.
[69] Sun Y, Choi W M, Jiang H, Huang Y Y, Rogers J A. Nature Nanotech., 2006, 1(3): 201.
[70] Lipomi D J, Tee B C K, Vosgueritchian M, Bao Z. Adv. Mater., 2011, 23(15): 1771.
[71] Lacour S P, Jones J, Wagner S, Li T, Suo Z G. Proc. IEEE, 2005, 93(8): 1459.
[72] Lee J, Wu J, Shi M, Yoon J, Park S I, Li M, Liu Z, Huang Y, Rogers J A. Adv. Mater., 2011, 23(8): 986.
[73] Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y, Paik U, Rogers J A. Nat. Commun., 2013, 4:1543.
[74] Song Z, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H, Jiang H. Nat. Commun., 2014, 5: 3140.
[75] Kwon Y H, Woo S W, Jung H R, Yu H K, Kim K, Oh B H, Ahn S, Lee S Y, Song S W, Cho J, Shin H C, Kim J Y. Adv. Mater., 2012, 24(38): 5192.
[76] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat Mater, 2012, 11(1): 19.
[77] Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Adv. Mater., 2011, 23(47): 5641.
[78] Han X, Xu Y, Chen X, Chen Y C, Weadock N, Wan J, Zhu H, Liu Y, Li H, Rubloff G, Wang C, Hu L. Nano Energy, 2013, 2(6): 1197.
[79] Zhou G, Yin L C, Wang D W, Li L, Pei S, Gentle I R, Li F, Cheng H M. ACS Nano, 2013, 7(6): 5367.
[80] Zhou G, Li L, Wang D W, Shan X Y, Pei S, Li F, Cheng H M. Adv. Mater., 2015, 27(4): 641.
[81] Roy S, Bajpai R, Jena A K, Kumar P, Kulshrestha N, Misra D S. Energ. Environ. Sci., 2012, 5(5): 7001.
[82] Zhang L, Zhou M, Wen D, Bai L, Lou B, Dong S. Biosens. Bioelectron., 2012, 35(1): 155.
[83] Xie X, Ye M, Hu L, Liu N, McDonough J R, Chen W, Alshareef H, Criddle C S, Cui Y. Energ. Environ. Sci., 2012, 5(1): 5265.
[84] Xie X, Pasta M, Hu L, Yang Y, McDonough J, Cha J, Criddle C S, Cui Y. Energ. Environ. Sci., 2011, 4(4): 1293.
[85] Tominaka S, Nishizeko H, Mizuno J, Osaka T. Energ. Environ. Sci., 2009, 2(10): 1074.
[86] Gwon H, Hong J, Kim H, Seo D H, Jeon S, Kang K. Energ. Environ. Sci., 2014, 7(2): 538.
[87] Xie K, Wei B. Adv. Mater., 2014, 26(22): 3592.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[5] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[6] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[9] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[12] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[13] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[14] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[15] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
阅读次数
全文


摘要

柔性电池的最新研究进展