English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1422-1434 DOI: 10.7536/PC170560 前一篇   

所属专题: 电化学有机合成

• 综述 •

纳米NCS在电化学能量转换和储存中的制备和应用

朱永明, 姜云鹏, 胡会利*   

  1. 哈尔滨工业大学(威海)应用化学系 威海 264209
  • 收稿日期:2017-05-27 修回日期:2017-09-18 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 胡会利,e-mail:huhuili311@126.com E-mail:huhuili311@126.com
  • 基金资助:
    山东省重大专项(No.2015ZDZX04002)资助

Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage

Yongming Zhu, Yunpeng Jiang, Huili Hu*   

  1. Falcuty of Applied Chemistry, Harbin Institute of Technology, Weihai 264209, China
  • Received:2017-05-27 Revised:2017-09-18 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the Major Program of Shandong Province, China(No. 2015ZDZX04002).
镍-钴双金属硫化物(NiCo2S4)具有典型的AB2O4尖晶石结构,NiCo2S4的电导率比NiCo2O4电导率高两个数量级,在室温下的电导率高达1.25×106S·m-1。此外,NiCo2S4可提供比相应的单组分硫化物更有效的氧化还原反应,由于其独特的纳米结构和电化学性能,具有很大的应用潜力。本文系统地综述了不同结构纳米NiCo2S4的制备及其在电化学能量转换和储存中的应用,介绍了NiCo2S4纳米材料的形貌特征、物化特性以及合成方法。预处理条件、制备方法和生长基体都会对NiCo2S4纳米结构的形貌和性能产生影响,不同纳米结构(如纳米针、纳米线、纳米棒、纳米管、纳米盒、纳米片、纳米板和层次结构)的NiCo2S4可通过多种方法制得(如水热法和溶剂热法、低温合成法、阴离子交换法、蒸气转换法、电沉积方法、共沉淀法和自组装等),其中最常用的是水热和溶剂热法,因为它们成本低、易于处理且适合大规模制造。同时,总结了NiCo2S4纳米材料在电催化、超级电容器和锂离子电池领域中的应用现状;分析和比较其不同纳米结构的制备工艺、方法和应用,希望能促进NiCo2S4纳米材料在电化学能量转换和储存领域的发展;最后提出NiCo2S4纳米材料的发展及应用方向。
Nickel-cobalt bimetallic sulfide (NiCo2S4) has a typical AB2O4 spinel structure. The conductivity of NiCo2S4 is two orders of magnitude higher than that of NiCo2O4, and its conductivity is 1.25×106 S·m-1at room temperature. In addition, NiCo2S4 provides a more efficient redox reaction than the corresponding one-component sulfide, and has great potential for its unique nanostructures and electrochemical properties. In this paper, the preparation of NiCo2S4 nanostructures and its application in electrochemical energy conversion and storage are reviewed. The morphology, physicochemical properties and synthesis methods of NiCo2S4 nano materials are introduced. Pretreatment conditions, preparation methods and growth matrix will have an effect on the morphology and properties of NiCo2S4 nanostructures. NiCo2S4 with different nanostructures (such as nanoneedles, nanowires, nanorods, nanotubes, nanocapses, nanosheets, nanostructures and hierarchical structures) can be prepared by a variety of methods (such as hydrothermal method and solvent heat method, low temperature synthesis method, anion exchange method, steam conversion method, electrodeposition method, coprecipitation method and self-assembly, etc.). Among them, hydrothermal and solvothermal are the most commonly used methods because they have the characteristics of low cost, easy handling and suitable for large scale manufacturing. The application status of NiCo2S4 nano materials in electrocatalysis, supercapacitors and lithium ion batteries is summarized. This paper analyzes and compares the preparation process, method and application of different nanostructures, hoping to promote the development of NiCo2S4 nano materials in the field of electrochemical energy conversion and storage. The development and application direction of NiCo2S4 nano materials are proposed.
Contents
1 Introduction
2 Preparation of NiCo2S4 nanostructures
3 Electrochemical application of NiCo2S4 nanostructures
3.1 Electrochemical catalysis:bifunctional electrocatalysts
3.2 Pseudocapacitive properties:supercapacitors
3.3 New electrode materials:anode material for Li-ion batteries
4 Conclusion

中图分类号: 

()
[1] Han S C, Hu L F, Gao N, Al-Ghamdi A A, Fang X S. Advanced Functional Materials, 2014, 24(24):3725.
[2] Xu X J, Hu L F, Gao N, Liu S X, Wageh S, Al-Ghamdi A A, Alshahire A, Fang X S. Advanced Functional Materials, 2015, 25(3):445.
[3] Han S, Wu D Q, Li S, Zhang F, Feng X L. Small, 2013, 9(8):1173.
[4] Xiao J W, Yang S H. RSC Advances, 2011, 1(4):588.
[5] Wei T Y, Chen C H, Chien H C, Lu S Y, Hu C C. Advanced Materials, 2010, 22(3):347.
[6] Chen H C, Jiang J J, Zhang L, Wan H Z, Qi T, Xia D D. Nanoscale, 2013, 5(19):8879.
[7] Xiao J W, Zeng X W, Chen W, Xiao F, Wang S. Chemical Communications, 2013, 49(100):11734.
[8] Bouchard R J, Russo P A. Inorganic Chemistry, 1965, 4(5):8.
[9] Xiao J W, Wan L, Yang S H, Wang S. Nano Letters, 2014, 14(2):831.
[10] Xia C, Li P, Gandi A N, Schwingenschl gl U, Alshareef H N. Chemistry of Materials, 2015, 27(19):6482.
[11] Wang J G, Jin D D, Zhou R, Shen C, Xie K Y, Wei B Q. Journal of Power Sources, 2016, 306:100.
[12] Zhang L S, Zuo L Z, Fan W, Liu T X. ChemElectroChem, 2016, 3(9):1384.
[13] Chen W, Xia C, Alshareef H N. ACS Nano, 2014, 8(9):9531.
[14] Wang M R, Lai Y Q, Fang J, Qin F R, Zhang Z, Li J, Zhang K. Catalysis Science & Technology, 2016, 6(2):434.
[15] Sivanantham A, Ganesan P, Shanmugam S. Advanced Functional Materials, 2016, 26(26):4661.
[16] Zhang Z Y, Wang X G, Cui G L, Zhang A H, Zhou X H, Xu H X, Gu L. Nanoscale, 2014, 6(7):3540.
[17] Liu Q, Jin J, Zhang J Y. ACS Applied Materials & Interfaces, 2013, 5(11):5002.
[18] Liu X B, Wu Z P. Materials Letters, 2016, 187:24.
[19] Chen J Z, Xu J L, Zhou S, Zhao N, Wong C P. Nano Energy, 2016, 25:193.
[20] Wang J G, Zhou R, Jin D D, Xie K Y, Wei B Q. Energy Storage Materials, 2015, 2:1.
[21] Zhou W W, Yu K, Wang D, Chu J, Li J Y, Zhao L M, Ding C Y, Du Y, Jia X T, Wang H T, Wen G W. Nanotechnology, 2016, 27(23):235402.
[22] Li Y H, Cao L J, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y H. Journal of Materials Chemistry A, 2014, 2(18):6540.
[23] Chen H C, Jiang J J, Zhang L, Xia D D, Zhao Y D, Guo D Q, Qi T, Wan H Z. Journal of Power Sources, 2014, 254(15):249.
[24] Pu J, Wang T T, Wang H Y, Tong Y, Lu C C, Kong W, Wang Z H. ChemPlusChem, 2014, 79(4):577.
[25] Yu D J, Yuan Y F, Zhang D, Yin S M, Lin J X, Rong Z, Yang J L, Chen Y B, Guo S Y. Electrochimica Acta, 2016, 198:280.
[26] Cai D P, Wang D D, Wang C X, Liu B, Wang L L, Liu Y, Li Q D,Wang T H. Electrochimica Acta, 2015, 151:35.
[27] Xiong X H, Waller G, Ding D, Chen D C, Rainwater B, Zhao B, Wang Z X, Liu M L. Nano Energy, 2015, 16:71.
[28] Chen H C, Chen S, Shao H Y, Li C, Fan M Q, Chen D, Tian G L, Shu K Y. Chemistry an Asian Journal, 2016, 11(2):248.
[29] Yang Y F, Cheng D, Chen S J, Guan Y L, Xiong J. Electrochimica Acta, 2016, 193:116.
[30] Wu Z B, Pu X L, Ji X B, Zhu Y R, Jing M J, Chen Q Y, Jiao F P. Electrochimica Acta, 2015, 174:238.
[31] Shen L F, Wang J, Xu G Y, Li H S, Dou H, Zhang X G. Advanced Energy Materials, 2015, 5(3):1400977.
[32] Peng T, Qian Z Y, Wang J, Song D L, Liu J Y, Liu Q, Wang P. Journal of Materials Chemistry A, 2014, 2(45):19376.
[33] Song Y, Chen Z L, Li Y M, Wang Q C, Fang F, Zhou Y N, Hu L F, Sun D L. Journal of Materials Chemistry A, 2017, 5:9022.
[34] Hou L R, Hua H, Bao R Q, Chen Z Y, Yang C, Zhu S Q, Pang G, Tong L N, Yuan C Z, Zhang X G. ChemPlusChem, 2016, 81(6):557.
[35] Jin R C, Liu G, Liu C P, Sun L L. Materials Research Bulletin, 2016, 80:309.
[36] Zou R J, Zhang Z Y, Yuen M F, Sun M L, Hu H Q, Lee C S, Zhang W J. NPG Asia Material, 2015, 7:e195.
[37] Lu F, Zhou M, Li W R, Weng Q H, Li C L, Xue Y M, Jiang X F, Zeng X H, Bando Y, Golberg D. Nano Energy, 2016, 26:313.
[38] Bai D X, Wang F, Lv J M, Zhang F Z, Xu S L. ACS Applied Materials & Interfaces, 2016, 8(48):32853.
[39] Zhang Y F, Ma M Z, Yang J, Sun C C, Su H Q, Huang W, Dong X C. Nanoscale, 2014, 6(16):9824.
[40] Chen H, Liu X L, Zhang J M, Dong F, Zhang Y X. Ceramics International, 2016, 42(7):8909.
[41] Li Z C, Ji X, Han J, Hu Y M, Guo R. Journal of Colloid & Interface Science, 2016, 477:46.
[42] Yang W W, Chen L A,Yang J, Zhang X, Fang C, Chen Z L, Huang L, Liu J G, Zhou Y, Zou Z G. Chemical Communications, 2016, 52(30):5258.
[43] Nguyen V H, Lamiel C, Shim J J. New Journal of Chemistry, 2016, 40(5):4810.
[44] Zhu Y R, Wu Z B, Jing M J, Yang X M, Song W X, Ji X B. Journal of Power Sources, 2015, 273:584.
[45] Zeng Z F, Wang D Z, Zhu J L, Xiao F Q, Li Y D, Zhu X H. CrystEngComm, 2016, 18(13):2363.
[46] Niu L Y, Wang Y D, Ruan F P, Shen C, Shan S, Xu M, Sun Z K, Li C, Liu X J, Gong Y Y. Journal of Materials Chemistry A, 2016, 4(15):5669.
[47] Wan H Z, Jiang J J, Yu J W, Xu K, Miao L, Zhang L, Chen H C, Ruan Y J. CrystEngComm, 2013, 15(38):7649.
[48] Pu J, Cui F L, Chu S B, Wang T T, Sheng E H, Wang Z H. ACS Sustainable Chemistry & Engineering, 2013, 2(4):809.
[49] Wen Y X, Peng S L, Wang Z L, Hao J X, Qin T F, Lu S Q, Zhang J C, He D Y, Fan X Y, Cao G Z. Journal of Materials Chemistry A, 2017, 5(15):7144.
[50] Li R, Wang S L, Huang Z C, Lu F X, He T B. Journal of Power Sources, 2016, 312:156.
[51] Hu C G, Zhai X Q, Liu L L, Zhao Y, Liang L, Qiu L T. Scientific Reports, 2013, 3(6):2065.
[52] Lee S K, Song M J, Kim J H, Kan T S, Lim Y K, Ahn J P, Lim D S. NPG Asia Materials, 2014, 6(7):e115.
[53] Zhang G Q, Xia B Y, Xiao C, Yu L, Wang X, Xie Y, Lou X W. Angewandte Chemie, 2013, 52(33):8643.
[54] Luo J S, Xia X H, Luo Y S, Guan C, Liu J L, Qi X Y, Ng C F, Yu T, Zhang H, Fan H J. Advanced Energy Materials, 2013, 3(6):737.
[55] Zhu P N, Wu Y Z, Reddy M V, Nair A S, Chowdari B V R, Ramakrishna S. RSC Advances, 2012, 2(2):531.
[56] Binitha G, Soumya M S, Madhavan A A, Praveen P, Subramanian K R V, Reddy M V, Nair S V, Nair A S, Sivakumar N. Journal of Materials Chemistry A, 2013, 1(38):11698.
[57] Li D L, Gong Y N, Pan C X. Scientific Reports, 2016, 6:29788.
[58] Li L J. Bifunctional Air Electrodes, 2014, 5:24936.
[59] Qian Y H, Hu Z G, Ge X M, Yang S L, Peng Y W, Kang Z X, Liu Z L, Lee J Y, Zhao D. Carbon, 2016, 111:641.
[60] Lyons M E G, Brandon M P. International Journal of Electrochemical Science, 2008, 3:1425.
[61] Chen P Z, Xu K, Fang Z W, Tong Y, Wu J C, Lu X L, Peng X, Ding H, Wu C Z, Xie Y. Angewandte Chemie, 2015, 54(49):14710.
[62] Jervis R, Mansor N, Gibbs C, Murray C A, Tang C U, Shearing P R, Brett D J L. Journal of the Electrochemical Society, 2014, 161(4):F458.
[63] Wu J B, Li Z G, Huang X H, Lin Y. Journal of Power Sources, 2013, 224(5):1.
[64] Chen D Y, Mei X, Ji G, Lu M H, Xie J P, Lu J M, Lee J Y. Angewandte Chemie, 2012, 51(10):2409.
[65] Chen Y J, Qu B H, Mei L, Lei D N, Chen L B, Li Q H, Wang T H. Journal of Materials Chemistry, 2012, 22(48):25373.
[66] Zhu J, Xu Z, Lu B G. Nano Energy, 2014, 7(7):114.
[67] Li J F, Xiong S L, Liu Y R, Ju Z C, Qian Y T. ACS Applied Materials & Interfaces, 2013, 5(3):981.
[68] Shen L F, Che Q, Li H S, Zhang X G. Advanced Functional Materials, 2014, 24(18):2630.
[69] Yamaguchi Y, Takeuchi T, Sakaebe H, Kageyama H, Seno H, Sakai T, Tatsumib K. Journal of the Electrochemical Society, 2010, 157(6):A630.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[10] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[11] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[12] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[13] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.