English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 713-719 前一篇   后一篇

• 综述与评论 •

质谱技术鉴定细胞中组蛋白翻译后修饰的研究进展*

陈英1;张锴1**;何锡文1;张玉奎1,2   

  1. (1. 南开大学化学学院 天津 300071; 2. 中国科学院大连化学物理研究所 大连 116023)
  • 收稿日期:2009-05-20 修回日期:2009-08-27 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 张锴 E-mail:zhangkai730@yahoo.com.cn
  • 基金资助:

    国家自然科学基金;国家自然科学基金;国家973计划

Development of Identification for Post-Translational Modifications in Histones by Mass Spectrometry Based Proteomics

Chen Ying1; Zhang Kai1**; He Xiwen1; Zhang Yukui1,2   

  1. (1. Department of Chemistry, Nankai University, Tianjin 300071, China; 2. National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)
  • Received:2009-05-20 Revised:2009-08-27 Online:2010-04-24 Published:2010-03-30
  • Contact: Zhang Kai E-mail:zhangkai730@yahoo.com.cn
  • Supported by:

    National Natural Science Foundation of China;National Natural Science Foundation of China

组蛋白是真核细胞中构成染色质内核小体的主要元件,其翻译后修饰蕴藏着组蛋白密码,是表观遗传学的重要内容,影响染色质的结构和功能,进而调控基因表达。组蛋白翻译后修饰形式的鉴定是揭示组蛋白密码的关键,目前质谱技术已经成为分析组蛋白及其翻译后修饰的重要工具。本文综述了组蛋白翻译后修饰鉴定方法的新进展,介绍了基于质谱技术“bottom up”和“top down”的组蛋白分析策略,及CID、ECD和ETD等鉴定组蛋白修饰位点的质谱碎片裂解技术,并结合当前研究进展,评述了质谱技术在组蛋白翻译后修饰谱的鉴定、组蛋白各种变体的测定、以及在生理过程中组蛋白修饰丰度动态变化的定量分析等方面应用的新进展。

In eukaryotic cells, chromosomal DNA is packaged into a compact structure, chromatin, with the help of four core histones. The fundamental repeating unit of chromatin is the nucleosome, which contains an octamer of core histones, around 147 base pairs of DNA are wrapped. Post-translational modifications (PTMs) in histones are generally considered to be a major group of epigenetic marks. Accordingly because PTMs alter the properties of histones, hence, affect histone structure and function and regulate the gene expression. Therefore, identification of histones PTMs is the key to discover histone codes. At present mass spectrometry has become a powerful analysis tool. Here, we introduced the novel development of the strategies based on mass spectrometry ("bottom up" and "top down") in mapping histone PTMs, fragment dissociation technologies such as CID, ECD and ETD. We also reported the application of mass spectrometry in addressing histone PTMs sites, identifying histone variants and quantifying differential expression of these PTMs in cells.

Contents
1 The strategies and methods of identification for post-translational modifications in histones by mass spectrometry
1.1 The strategy for histone analysis based mass spectrometry
1.2 MS fragmentation
2 The application of mass spectrometry in post-translational modifications in histones
2.1 Identification and characterization of post-translation modifications in histones
2.2 Identification and characterization of histone variants
2.3 Quantification based mass spectrometry for post-translational modifications in histones

中图分类号: 

()

[1 ] Strahl B D,Allis C D. Nature,2000,403(6765) : 41—45
[2 ] Kouzarides T. Cell,2007,128(4) : 693—705
[3 ] Berger S L. Nature,2007,447(7143) : 407—412
[4 ] Jenuwein T,Allis C D. Science,2001,293 ( 5532 ) : 1074—1080
[5 ] Feinberg A P. Nature,2007,447(7143) : 433—440
[6 ] Jones P A,Baylin S B. Cell,2007,128(4) :683—692
[7 ] Marvin K W,Yau P,Bradbury E M. J. Biol. Chem. ,1990,265(32) : 19839—19847
[8 ] Thorne A W,Kmiciek D,Michelson K,et al. Eur. J. Bio.Chem. ,1990,193(3) : 701—713
[9 ] Turner B M,Fellaus G. Eur. J. Bio. Chem. ,1989,179 (1 ) :131—139
[10] Suka N,Suka Y,Carmen A A,et al. Mol. Cell. ,2001,8(2) : 473—479
[11] Zhang K,Tang H,Blankenship J W,et al. Anal Biochem. ,2002,306:259—269
[12] Garcia B A,Joshi S,Thomas C E,et al. Mol. Cell. Prot. ,2006,5(9) : 1593—1609
[13] Rose K L,Li A,Zalenskaya I,et al. J. Proteome Res. ,2008,7 (9) :4070—4078
[14] Chait B T. Science,2006,314: 65—66
[15] Boyne M T,Pesavento J J,Mizzen C A,et al. J. Proteome Res. ,2006,5(2) : 248—253
[16] Jiang L H,Smith J N,Anderson S L,et al. J. Biol. Chem. ,2007,282(38) : 27923—27934
[17] Parks B A,Jiang L H,Thomas P M,et al. Anal. Chem. ,2007,79(21) :7984—7991
[18] Ouvry-Patat S A,Torres M P,Quek H H,et al. Proteomics,2008,8(14) : 2798—2808
[19] Eng J K,McCormack A L,Yates J R. J. Am. Soc. Mass Spectrom. ,1994,5: 976—989
[20] Kim J Y,Kim K W,Kwon H J,et al. Anal. Chem. ,2002,74(21) : 5443—5449
[21] Mikesh L M, Ueberheide B M, Chi A, et al. Biochimi.Biophys. Acta. ,2006,1764(12) : 1811—1822
[22] Hauser N J,Han H L,McLuckey S A,et al. J. Proteome Res. ,2008,7 (5) : 1867—1872
[23] Ueberheide B M,Mollah S. Inter. J. Mass Spectrom. ,2007,259: 46—56
[24] Thomas C E,Kelleher N L,Mizzen C A. J. Proteome Res. ,2006,5(2) : 240—247
[25] Siuti N,Roth M J,Mizzen C A, et al. J. Proteome Res. ,2006,5(2) : 233—239
[26] Coon J J,Ueberheide B M,John E P S,et al. PNAS,2005,102(27) : 9463—9468
[27] Phanstiel D,Brumbaugh J,Berggren W T,et al. PNAS,2008,105(11) : 4093—4098
[28] McAlister G C,Berggren W T, Griep-Raming J, et al. J.Proteome Res. ,2008,7(8) : 3127—3136
[29] Strahl B D,Briggs S D,Brame C J,et al. Curr. Biol. ,2001,11(12) : 996—1000
[30] Ng H H,Feng Q,Wang H, et al. Genes Dev. ,2002,16(12) : 1518—1527
[31] Van Leeuwen F,Gafken P R,Gottschling D E. Cell,2002,109(6) : 745—756
[32] Xu F,Zhang K,Grunstein M. Cell,2005,121(3) : 375—385
[33] Masumoto H,Hawke D,Kobayashi R,et al. Nature,2005,436(7048) : 294—298
[34] Recht J,Tsubota T,Tanny J C,et al. PNAS,2006,103(18) :6988—6993
[35] Zhang L,Eugeni E E,Parthun M R,et al. Chromosoma,2003,112(2) : 77—86
[36] Ye J,Ai X,Eugeni E E,et al. Mol. Cell,2005,18 ( 1 ) :123—130
[37] Mollah S. Ph. D. Dissertation, University of Virginia,Charlottesville,VA,2004
[38] Snijders A P L,Pongdam S,Lambert S J,et al. J. Proteome Res. ,2008,7(10) : 4326—4335
[39] Garcia B A,Buusby S A,Barber C M, et al. J. Proteome Res. ,2004,3(6) : 1219—1227
[40] Garcia B A,Barber C M,Hake S B,et al. Biochemistry,2005,44(39) : 13202—13213
[41] Dou Y,Gorovsky M A. Mol. Cell,2000,6(2) : 225—231
[42] Deterding L J,Bunger M K,Banks G C,et al. J. Proteome Res. ,2008,7(6) : 2368—2379
[43] Zhang K,Chen Y,Zhang Z H,et al. J. Proteome Res. ,2009,8 (2) : 900—906
[44] Chen Y,Sprung R,Tang Y,et al. Mol. Cell. Proteomics,2007,6(5) : 812—819
[45] Chu F, Nusinow D A, Chalkley R J, et al. Mol. Cell Proteomics,2006,5: 194—203
[46] Millar C B,Xu F,Zhang K,et al. Genes Dev. ,2006,20:711—722
[47] Kusch T,Florens L,Macdonald W H,et al. Science,2004,306: 2084—2087
[48] Bergmuller E,Gehrig P M,Gruissem W. J. Proteome Res. ,2007,6(9) : 3655—3668
[49] Mckittrick E,Gafken P R,Ahmad K,et al. PNAS,2004,101:1525—1530
[50] Johnson L,Mollah S,Garcia B A,et al. Nucleic Acids Res. ,2004,32(22) : 6511—6518
[51] Hake S B,Garcia B A,Duncan E M,et al. J. Biol. Chem. ,2006,281(1) : 559—568
[52] Banks G C,Deterding L J,Tomer K B,et al. Biol. Chem. ,2001,276(39) : 36467—36473
[53] Deterding L J,Banks G C,Tomer K B,et al. Methods,2004,33(1) : 53—58
[54] Garcia B A,Thomas C E,Kelleher N L,et al. J. Proteome Res. ,2008,7(10) : 4225—4236
[55] Zhang L,Freitas M A,Wickham J,et al. J. Am. Soc. Mass Spectrom. ,2004,15(1) : 77—86
[56] Ren C,Zhang L, Freitas M A, et al. J. Am. Soc. Mass Spectrom. ,2005,16(10) : 1641—1653
[57] Frega M F,Ballestar E,Villar-Garea A,et al. Nat. Gen. ,2005,37(4) : 391—400
[58] Beck H C,Nielsen E C,Matthiesen R,Jensen O N,et al. Mol.Cell. Proteomics,2006,5(7) : 1314—1325
[59] Pesavento J J,Mizzen C A,Kelleher N L. Anal. Chem. ,2006,78(13) :4271—4280
[60] Mackay L C,Ramsahoye B,Burgess K,et al. Anal. Chem. ,2008,80(11) : 4147—4153
[61] Ong S E,Blagoev B,Kratchmarova I,et al. Mol. Cell. Prot. ,2002,1(5) :376—386
[62] Su X D,Zhang L W,Lucas D M,et al. Anal. Biochem. ,2007,363(1) : 22—34
[63] Bonenfant D, Towbin H, Coulot M, et al. Mol. Cell.Proteomics,2007,6(11) : 1917—1932
[64] Syka J E P,Marto J A,Bai D L,et al. J. Proteome Res. ,2004,3:621—626
[65] Johnson L,Mollah S,Garcia B A,et al. Nucleic Acids Res. ,2004,32(22) : 6511—6518
[66] Hake S B,Garcia B A,Duncan E M,et al. J. Biol. Chem. ,2006,281(1) : 559—568
[67] Garcia B A,Busby S A,Shabanowitz J,et al. J. Proteome Res. ,2005,4(6) : 2032—2042
[68] Bonaldi T,Imhof A,Regula J T. Proteomics,2004,4 ( 5 ) :1382—1396
[69] Smith C M,Gafken P R,Zhang Z,et al. Anal. Biochem. ,2003,316(1) : 23—33

[1] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[2] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[3] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[4] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[5] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[6] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[7] 李瑜玲, 赵君博, 郭寅龙. 常压电喷雾离子化的机理及应用[J]. 化学进展, 2019, 31(1): 94-109.
[8] 任娟, 边申, 王奕允, 孔祥蕾. 幻数团簇丝氨酸八聚体:结构和手性特征[J]. 化学进展, 2018, 30(4): 383-397.
[9] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[10] 刘婧靖, 何晓伟, 何燕, 喻目千, 蒋乐, 陈波. 纸喷雾敞开式质谱法的发展和应用[J]. 化学进展, 2017, 29(6): 659-666.
[11] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[12] 石婷, 陈铭, 陈雄平, 汪汲涛, 万锕俊, 赵一雷. 蛋白质巯基亚硝基化分子机制及其疾病相关性[J]. 化学进展, 2015, 27(5): 594-600.
[13] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[14] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.
[15] 吴亮, 沐春磊, 张群林*, 吕忱, 张晓悦. 纳米粒子参与的鲁米诺化学发光及其分析应用[J]. 化学进展, 2013, 25(07): 1187-1197.