English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 216-230 DOI: 10.7536/PC160717 前一篇   后一篇

• 综述 •

水溶性苝酰亚胺类材料的合成及其生物应用

吴锦钧1, 杨震1, 焦剑梅2, 孙鹏飞1*, 范曲立1, 黄维1,2*   

  1. 1. 南京邮电大学 有机电子与信息显示国家重点实验室培育基地 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023;
    2. 南京工业大学 江苏省柔性电子重点实验室 先进材料研究院 江苏先进生物与化学制造协同创新中心 南京 211816
  • 收稿日期:2016-07-18 修回日期:2016-12-21 出版日期:2017-02-15 发布日期:2017-02-27
  • 通讯作者: 孙鹏飞, 黄维 E-mail:iampfsun@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61378081,21574064,51503103),江苏省自然科学基金青年基金项目(No.BK20150843),南京邮电大学引进人才科研启动基金项目(No.NY215017)和南京邮电大学科研基金项目(No.NY211003)资助

The Synthesis and Biological Applications of Water-Soluble Perylene Diimides

Jinjun Wu1, Zhen Yang1, Jianmei Jiao2, Pengfei Sun1*, Quli Fan1, Wei Huang1,2*   

  1. 1. Key Lab for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
    2. Key Lab of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2016-07-18 Revised:2016-12-21 Online:2017-02-15 Published:2017-02-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61378081, 21574064, 51503103), the Jiangsu Provincial Natural Science Foundation for Youth (No. BK20150843), and NUPTSF (No. NY215017, NY211003).
3,4,9,10-苝四甲酰二亚胺及其衍生物(PDIs)因其光、热、化学稳定性好,荧光量子效率高的优点,已经在有机场效应晶体管(OFET)、有机太阳能电池(OPV)、染料激光和有机电致发光器件(OLED)等方面使用,但其自身结构容易π-π堆积,导致水溶性差,限制了其在生物领域的进一步运用。因此,对PDIs进行修饰,获得可以用于生物体的水溶性PDIs显得尤为重要。本文综述了对PDIs进行水溶性修饰的各种方法:使用阴离子取代基、阳离子取代基和非离子取代基等在PDIs酰亚胺的氮原子位置或者湾位置进行修饰,利用取代基的水溶性、静电排斥作用或者空间位阻效应来实现PDIs的水溶性。同时,进一步阐述了水溶性PDIs在新型荧光探针、光声成像、化学治疗和光动态治疗等方面的应用。
Perylene diimide and its derivatives (PDIs) have been widely used as organic field-effect transistor (OFET), organic photovoltaic cell (OPV), dye laser and organic light emitting diode (OLED) in the field of optoelectronic materials due to their photo, thermal, chemical stability and high fluorescence quantum yields. However, because of their inherent structure, PDIs have poor water-solubility and easily form aggregates, which has limited their applications in biological fields. So, it's essential to synthesize water-soluble PDIs. This paper systematically presents the synthetic methods for obtaining water-soluble PDIs by introducing anionic substituent, cationic substituent or non-ionic substituent into the imide-position or bay-region of PDIs. Some of these substituents are water-soluble, and the others will achieve the water-solubility of PDIs through electrostatic repulsion or steric hindrance. In addition, several novel biological applications have been listed, such as chemotherapy,photodynamic therapy and fluorescence imaging.PDIs can also be used as a promising photo-acoustic contrast agents due to their good light absorption and photostability.

Contents
1 Introduction
2 Modification of PDIs
3 Modification of water-soluble PDIs
3.1 Anionic substituent
3.2 Cationic substituent
3.3 Non-ionic substituent
4 Biological application of water-soluble PDIs
4.1 Fluorescence probe
4.2 Contrast agent of photo-acoustic imaging
4.3 Chemotherapy
4.4 Photo-sensitizer of photodynamic therapy
5 Conclusion

中图分类号: 

()
[1] Huang C, Barlow S, Marder S R. J. Org. Chem., 2011, 76:2386.
[2] Kazmaier P M, Hoffmannr R. J. Am. Chem. Soc., 1994, 116:9684.
[3] Wurthner F. Chem. Commun., 2004, (14):1564.
[4] Ahrens M J, Fuller M J, Wasielewski M R. Chem. Mater., 2003, 15:2684.
[5] Serin J M, Brousmiche D W, Frechet J M J. Chem. Commun., 2002, (22):2605.
[6] Gronheid R, Hofkens J, Köhn F, Weil T, Reuther E, Müllen K, Schryver F C D. J. Am. Chem. Soc., 2002, 124:2418.
[7] An Z, Yu J, Jones S C, Barlow S, Yoo S, Domercq B, Prins P, Siebbeles L D A, Kippelen B, Marder S R. Adv. Mater., 2005, 17:2580.
[8] Jones B A, Facchetti A, Wasielewski M R, Marks T J. J. Am. Chem. Soc., 2007, 129:15259.
[9] Sadrai M, Bird G R. Opt. Commun., 1984, 51:62.
[10] Ford W E, Kamat P V. J. Phys. Chem., 1987, 91:6373.
[11] Seybold G, Wagenblast G. Dyes Pigments, 1989, 11:303.
[12] Zhan X W, Tan Z, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S R. J. Am. Chem. Soc., 2007, 129:7246.
[13] Lindner S M, Kaufmann N, Thelakkat M. Org. Electr., 2007, 8:69.
[14] Jones B A, Ahrens M J, Yoon M H, Facchetti A, Marks T J, Wasielewski M R. Angew. Chem. Int. Ed., 2004, 43:6363.
[15] Zhan X W, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Marder S R. Adv. Mater., 2011, 23:268.
[16] Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend R H, MacKenzie J D. Science, 2001, 293:1119.
[17] Tan Z A, Zhou E, Zhan X, Wang X, Li Y, Barlow S, Marder S R. Appl. Phys. Lett., 2008, 93:073309.
[18] Qu J Q, Zhang J Y, Grimsdale A C, Mullen K, Jaiser F, Yang X H, Neher D. Macromolecules, 2004, 37:8297.
[19] Langhals H, Jona W, Einsiedl F, Wohnlich S. Adv. Mater., 1998, 10:1022.
[20] Gorl D, Zhang X, Wurthner F. Angew. Chem. Int. Ed., 2012, 51:6328.
[21] Wang B, Yu C. Angew. Chem., 2010, 122:1527.
[22] Wang B, Zhu Q K, Liao D L, Yu C. J. Mater. Chem., 2011, 21:4821.
[23] Wang B, Jiao H P, Li W Y, Liao D L, Wang F Y, Yu C. Chem. Commun., 2011, 47:10269.
[24] Fan Q L, Cheng K, Yang Z, Zhang R P, Yang M, Hu X, Ma X M, Bu L H, Lu X M, Xiong X X, Huang W, Zhao H, Cheng Z. Adv. Mater., 2015, 27:843.
[25] Zhao Q, Zhang H Y. Dyes Pigments, 2005, 66:15.
[26] Icli S, Demic S, Dindar B, Doroshenko A O, Timur C. J. Photochem. Photobiol. A, 2000, 136:15.
[27] Langhals H. Heterocycles, 1995, 40:477.
[28] Syebold G, Wagenblast G. Dyes Pigments, 1989, 11:303.
[29] Langhals H, Demmig S, Huber H. Spectrochim. Acta Part A, 1988, 44:1189.
[30] Fan L Q, Xu Y P, Tian H. Tetrahedron Lett., 2005, 46:4443.
[31] Chen Z J, Baumeister U, Tschierske C, Wurthner F. Chem. Eur. J., 2007, 13:450.
[32] Sadrai M, Hadel L, Saners R R. J. Phys. Chem., 1992, 96:7988.
[33] Wang K, Wang Y, Li J, An H, Zhang L, Zhang J, Li X. Bioorg. Med. Chem. Lett., 2013, 23:480.
[34] Qu J, Kohl C, Pottek M, Müllen K. Angew. Chem. Int. Ed., 2004, 43:1528.
[35] Frank D, Vos M, Antonietti M, Sommerdijk N A J M, Faul C F J. Chem. Mater., 2006, 18:1839.
[36] Kohl C, Weil T, Qu J, Müllen K. Chem. Eur. J., 2004, 10:5297.
[37] Ehli C, Oelsner C, Guldi D M, Mateo-Alonso A, Prato M, Schmidt C, Backes C, Hauke F, Hirsch A. Nat. Mater., 2014, 1:243.
[38] Backes C, Schmidt C D, Hauke F, Bottcher C, Hirsch A. J. Am. Chem. Soc., 2009, 131:2172.
[39] Zheng Y, You S S, Ji C D, Yin M Z, Yang W T, Shen J. Adv. Mater., 2016, 28:1375.
[40] Battagliarin G, Davies M, Mackowiak S, Li C, Müllen K. Chem. Phys., 2012, 13:923.
[41] Wang B, Yu C. Angew. Chem. Int. Ed., 2010, 49:1485.
[42] Xu Z, Cheng W, Guo K, Yu J, Shen J, Tang J, Yang W T, Yin M. ACS Appl. Mater. Inter., 2015, 7:9784.
[43] You S S, Cai Q, Zheng Y, He B C, Shen J, Yang W T, Yin M Z. ACS Appl. Mater. Inter., 2014, 6:16327.
[44] Yin M Z, Shen J, Gert O P, Mullen K. J. Am. Chem. Soc., 2008, 130:7806.
[45] You S, Cai Q, Müllen K, Yang W, Yin M. Chem. Commun., 2014, 50:823.
[46] Yin M T, Feng C L, Shen J, Yu Y M, Xu Z J, Yang W T, Knoll W, Müllen K. Small, 2011, 7:1629.
[47] Xu Z J, He B C, Shen J, Yang W T, Yin M Z. Chem. Commun., 2014, 50:823.
[48] Du F F, Tian J, Wang H, Liu B, Jin B K, Bai R. Macromolecules, 2012, 45:3086.
[49] Forgan R S, Sauvage J P, Stoddart J F. Chem. Rev., 2011, 111:5434.
[50] Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biomaterials, 2009, 30:6358.
[51] Biedermann F, Elmalem E, Ghosh I, Nau W M, Scherman O A. Angew. Chem., 2012, 124:7859.
[52] Liu K, YaoY X, Kang Y T, Liu Y, Han Y C, Wang Y L, Li Z B, Zhang X. Sci. Rep., 2013, 3:2372.
[53] Casado A G, Jonkheijm P, Huskens J. Langmuir, 2011, 27:11508.
[54] Biedermann F, Elmalem E, Ghosh I, Nau W M, Scherman O A. Angew. Chem. Int. Ed., 2012, 51:7739.
[55] Yang S K, Shi X H, Park S, Doganay S, Ha T, Zimmerman S C. J. Am. Chem. Soc., 2011, 133:9964.
[56] Rauwald U, Biedermann F, Deroo S, Robinson C V, Scherman O A. J. Phys. Chem. B, 2010, 114:8606.
[57] Zhang X, Rehm S, Safont-Sempere M M, Wurthner F. Nat. Mater., 2009, 1:263.
[58] Wang L, Xu L Q, Neoh K G, Kang E T. J. Mater. Chem., 2011, 21:6502.
[59] Xu L Q, Wang L, Zhang B, Lim C H, Chen Y, Neoh K G, Kang E T, Fu G D. Polymer, 2011, 52:2376.
[60] Ustinov A V, Dubnyakova V V, Korshun V A. Tetrahedron, 2008, 64:1467.
[61] Heek T, Nikolaus J, Schwarzer R, Fasting C, Welker P, Licha K, Herrmann K, Haag R. Bioconjugate Chem., 2013, 24:153.
[62] Li Z, Wei L, Gao M, Lei H. Adv. Mater., 2005, 17:1001.
[63] Gref R, Domb A, Quellec P, Blunk T, Muller R H, Verbavatz J M, Langer R. Adv. Drug. Delivery. Rev., 2012, 64:316.
[64] Shirman E, Ustinov A, Ben-Shitrit N, Weissman H, Iron M A, Cohen R, Rybtchinski B. J. Phys. Chem. B, 2008, 112:8855.
[65] Gao B X, Li H X, Liu H M, Zhang L C, Bai Q Q, Ba X W. Chem. Commun., 2011, 47:3894.
[66] Heek T, Fasting C, Rest C, Zhang X, Wurthner F, Haag R. Chem. Commun., 2010, 46:1884.
[67] Heek T, Wurthner F, Haag R. Chem. Eur. J., 2013, 19:10911.
[68] Chen M J, Yin M Z. Progress in Polymer Science, 2014, 39:365.
[69] Liu K L, Xu Z J, Yin M Z. Progress in Polymer Science, 2015, 46:25.
[70] Sun M M, Mullen K, Yin M Z. Chem. Soc. Rev., 2016, 45:1513.
[71] Jeong Y, Yoon J. Inorg. Chim. Acta., 2012, 381:2.
[72] Langner C, Denk H. Virchows Archiv, 2004, 445:111.
[73] Zhong L N, Xing F F, Bai Y L, Zhao Y M, Zhu S R. Spectrochim. Acta Part A, 2013, 115:370.
[74] Willner I, Zayats M. Angew. Chem., 2007, 119:6528.
[75] Zhao W A, Ali M M, Aguirre S D, Brook M A, Li Y F. Anal. Chem., 2008, 80:8431.
[76] Yang Z, Yuan Y, Jiang R C, Fu N N, Lu X M, Tian C C, Hu W B, Fan Q L, Huang W. Polym. Chem., 2014, 5:1372.
[77] Ma Y S, Zhang F X, Zhang J F, Jiang T Y, Li X M, Wu J S, Ren H X. Luminscence, 2016, 31:102.
[78] Wang L, Sun C, Li S F, Jia N, Li J, Qu F R, Goh K L, Chen Y. Polymer, 2016, 82:172.
[79] Kaloyanova S, Zagranyarski Y, Ritz S, Hanulova M, Koynov K, Vonderheit A, Mullen K, Peneva K. J. Am. Chem. Soc., 2016, 138:2881.
[80] Wang X, Pang Y, Ku G, Stoica G, Wang L V. Opt. Lett., 2003, 28:1739.
[81] Xiang L, Xing D, Gu H, Yang D, Yang S, Zeng L, Chen W R. J. Biomed. Opt., 2007, 12:14001.
[82] Taruttis A, van Dam G M, Ntziachristos V. Cancer Res., 2015, 75:1548.
[83] Zackrisson S, van de Ven S M W Y, Gambhir S S. Cancer Res., 2014, 74:979.
[84] Yuan Z, Jiang H. Med. Phys., 2007, 34:538.
[85] Xu M, Wang L V. IEEE Trans. Med. Imaging, 2002, 21:814.
[86] Xu M, Xu Y, Wang L V. IEEE Trans. Biomed. Eng., 2003, 50:1086.
[87] Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. ACS Nano, 2012, 6:641.
[88] Yu J, Yang C, Li J D S, Ding Y C, Zhang L, Yousaf M Z, Li J, Pang R, Wei L B, Xu L L, Sheng F G, Li C H, Li G J, Zhao L Y, Hou Y L. Adv. Mater., 2014, 26:4114.
[89] De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith B R, Ma T J, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub B T, Gambhir S S. Nat. Nanotechnol., 2008, 3:557.
[90] Xu Z J, Guo K R, Yu J S, Sun H L, Tang J, Shen J, Mullen K, Yang W T, Yin M Z. Small, 2014, 10:4087.
[91] Sun M M, Yin W Y, Dong X H, Yang W T, Zhao Y L, Yin M Z. Nanoscale, 2016, 8:5302.
[92] Ikeda N, Usuda J, Kato H, Ishizumi T, Ichinose S, Otani K, Honda H, Furukawa K, Okunaka T, Tsutsui H. Laser. Surg. Med., 2011, 43:749.
[93] Capella M A M, Capella L S J. Biomed. Sci., 2003, 10:361.
[94] Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40:340.
[95] Lucky S S, Soo K C, Zhang Y. Chem. Rev., 2015, 115:1990.
[96] Debele T A, Peng S, Tsai H C. Mol. Sci., 2015, 16:22094.
[97] Yukruk F, Dogan A L, Canpinar H, Guc D, Akkaya E U. Org. Lett., 2005, 7:2885.
[98] Dincalp H, K?z?lok S, Icli S. J. Fluoresc., 2014, 24:917.
[99] Cao G J, Rong R X, Wang Y N, Xu Q, Wang K R, Li X L. Dyes Pigments, 2017, 136:569.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[6] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[7] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[8] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[9] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[10] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[11] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[12] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[13] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[14] 刘江波, 王丽华, 左小磊. 基于DNA的细胞膜功能化[J]. 化学进展, 2019, 31(8): 1067-1074.
[15] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.