中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2116-2127 DOI: 10.7536/PC200943 Previous Articles   Next Articles

• Review •

Crystallization of Amorphous Drugs and Inhibiting Strategies

Minqian Luo1, Weili Heng2, Juan Dai1, Yuanfeng Wei2, Yuan Gao2, Jianjun Zhang1()   

  1. 1 School of Pharmacy, China Pharmaceutical University,Nanjing 211198, China
    2 School of Traditional Chinese Pharmacy, China Pharmaceutical University,Nanjing 211198, China
  • Received: Revised: Online: Published:
  • Contact: Jianjun Zhang
  • Supported by:
    National Natural Science Foundation of China(81703712); National Natural Science Foundation of China(81773675); National Natural Science Foundation of China(81873012); “Double First-Class”University Project(CPU2018GY11); “Double First-Class”University Project(CPU2018GY27)
Richhtml ( 42 ) PDF ( 1188 ) Cited
Export

EndNote

Ris

BibTeX

In comparison to the crystalline forms, amorphous drugs exhibit higher surface free energy, higher apparent solubility and faster dissolution rate. However, since the amorphous state is thermodynamically unstable, amorphous solids tend to transform into their stable crystalline forms, resulting in the decreased dissolution and hence low bioavailability. This paper reviews the fundamental introduction of amorphous drugs, the crystallization theory, the influence factors on the physical stability and strategies for their crystallization inhibition, in order to provide a theoretical guidance for the rational design of amorphous drug products and efficient development of amorphous formulations. All of these could contribute to more applications of amorphous drugs in overcoming the poor water solubility issues.

Contents:

1 Introduction

2 Overview of amorphous drugs

3 Crystallization of amorphous drugs

3.1 Crystallization behaviors of amorphous drugs

3.2 Crystallization tendency of amorphous drugs

3.3 Crystallization theory

4 Influence factors on crystallization of amorphous drugs

4.1 Thermodynamic factors

4.2 Kinetic factors

4.3 Intermolecular interactions

4.4 Water vapor sorption

4.5 Formulation preparation

5 Strategies to inhibit crystallization of amorphous drugs

5.1 To store under low temperatures

5.2 To form amorphous solid dispersions

5.3 To form coamorphous formulations

5.4 To optimize formulation preparation

5.5 Others

6 Conclusion and outlook

Table 1 Comparison for physicochemical properties of amorphous and crystalline solids
Fig. 1 Enthalpy-temperature diagram of solid drugs(Tm is the melting point and Tg is the glass transition temperature. Below Tg, the “virtual state” defined by the continuation of the supercooled liquid line is the “equilibrium glassy state”, representing the glassy state that is in structural equilibrium.)
Fig. 2 Schematic diagram of several common dissolution behaviors of amorphous drugs and crystalline drugs[24]
Fig. 3 Schematic representation of the classification system of the crystallization tendency determined from heat/cool cycles of the DSC measurement[26]
Fig. 4 Schematic representation of energetics associated with nucleation and crystal growth from the amorphous state
Fig. 5 Schematic representation of time dependence of nucleation I(jc, t):(1) steady state nucleation rate;(2) transient nucleation rate(as per Eq.(5))[11]
Fig. 6 Schematic representation of crystal nucleation and growth rates as a function of temperature[14]
Fig. 7 Schematic plot showing the effect of heat of fusion on the predictions of the Hoffmann equation.(Squares, diamonds, and triangles represent the calculated free energy values for compounds with 55 J/gm, 110 J/gm, and 220 J/gm as heat of fusion, respectively. The melting point used in the above calculations was 433 K.)[11]
Fig. 8 Variation of the relaxation time parameter, τ, with scaled temperature Tg - T. ▲ Sucrose, ■ Indomethacin, ● PVP. Lines indicate the range of values observed.[78]
Fig. 9 Schematic representation of energy of amorphous drugs, crystalline drugs and amorphous solid dispersions
Fig. 10 Schematic representation of stabilization mechanisms of coamorphous systems
[1]
Moinuddin S M, Shi Q, Tao J, Guo M S, Zhang J, Xue Q, Ruan S D, Cai T. AAPS Pharmscitech, 2020, 21(2): 1.

doi: 10.1208/s12249-019-1542-5
[2]
Di L, Fish P V, Mano T. Drug Discov. Today, 2012, 17(9/10): 486.

doi: 10.1016/j.drudis.2011.11.007
[3]
Jog R, Burgess D J. J. Pharm. Sci., 2017, 106(1): 39.

doi: 10.1016/j.xphs.2016.09.014
[4]
Xu R R, Yu J H, Yan W F. Prog. Chem., 2020, 32(8): 1017.
(徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8): 1017).

doi: 10.7536/PC200428
[5]
Newman A, Knipp G, Zografi G. J. Pharm. Sci., 2012, 101(4): 1355.

doi: 10.1002/jps.23031
[6]
Taylor L S, Zhang G G Z. Adv. Drug Deliv. Rev., 2016, 101: 122.

doi: 10.1016/j.addr.2016.03.006
[7]
Wyttenbach N, Kuentz M. Eur. J. Pharm. Biopharm., 2017, 112: 204.

doi: S0939-6411(16)30549-5 pmid: 27903457
[8]
Peltonen L, Strachan C J. Int. J. Pharm., 2020, 586: 119492.
[9]
Lapuk S E, Mukhametzyanov T A, Schick C, Gerasimov A V. Int. J. Pharm., 2020, 574: 118890.
[10]
Kothari S, Vippagunta R R. Mol. Pharmaceutics, 2019, 16(3): 943.

doi: 10.1021/acs.molpharmaceut.8b00853
[11]
Bhugra C, Pikal M J. J. Pharm. Sci., 2008, 97(4): 1329.

doi: 10.1002/jps.21138
[12]
Guo Y S, Shalaev E, Smith S. Trac Trends Anal. Chem., 2013, 49: 137.

doi: 10.1016/j.trac.2013.06.002
[13]
Viciosa M T, Moura Ramos J J, Diogo H P. Int. J. Pharm., 2020, 584: 119410.
[14]
Baghel S, Cathcart H, O'Reilly N J. J. Pharm. Sci., 2016, 105(9): 2527.

doi: 10.1016/j.xphs.2015.10.008
[15]
Kawakami K, Pikal M J. J. Pharm. Sci., 2005, 94(5): 948.

doi: 10.1002/jps.20298
[16]
Kaushal A M, Gupta P, Bansal A K. Crit. Rev. Ther. Drug Carr. Syst., 2004, 21(3): 133.

doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i3
[17]
van Drooge D J, Hinrichs W L J, Frijlink H W. J. Control. Release, 2004, 97(3): 441.

doi: 10.1016/j.jconrel.2004.03.018
[18]
Wei Y F, Zhou S Y, Hao T Y, Zhang J J, Gao Y, Qian S. Eur. J. Pharm. Sci., 2019, 129: 21.

doi: 10.1016/j.ejps.2018.12.016
[19]
Grzybowska K, Paluch M, Grzybowski A, Wojnarowska Z, Hawelek L, Kolodziejczyk K, Ngai K L. J. Phys. Chem. B, 2010, 114(40): 12792.

doi: 10.1021/jp1040212
[20]
Hancock B C, Parks M. Pharm. Res., 2000, 17(4): 397.

doi: 10.1023/A:1007516718048
[21]
Xue Y F, Meng W H, Wang R Z, Ren J J, Heng W L, Zhang J J. Progress in Chemistry, 2020, 32(06): 698.
(薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 化学进展, 2020, 32(06): 698.)
[22]
Wei Y F, Ling Y N, Su M L, Qin L, Zhang J J, Gao Y, Qian S. Chem. Pharm. Bull., 2018, 66(12): 1114.

doi: 10.1248/cpb.c18-00450
[23]
Heng W L, Wei Y F, Xue Y F, Cheng H, Zhang L H, Zhang J J, Gao Y, Qian S. Pharm. Res., 2019, 36(11): 159.

doi: 10.1007/s11095-019-2700-x
[24]
Brouwers J, Brewster M E, Augustijns P. J. Pharm. Sci., 2009, 98(8): 2549.

doi: 10.1002/jps.21650
[25]
Baird J A, van Eerdenbrugh B, Taylor L S. J. Pharm. Sci., 2010, 99(9): 3787.

doi: 10.1002/jps.22197
[26]
Kawakami K. Expert Opin. Drug Deliv., 2017, 14(6): 735.

doi: 10.1080/17425247.2017.1230099 pmid: 27598556
[27]
Shen T D, Sun B R, Xin S W. J. Alloys Compd., 2015, 631: 60.

doi: 10.1016/j.jallcom.2015.01.070
[28]
Kawakami K, Harada T, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H. J. Phys. Chem. B, 2015, 119(14): 4873.

doi: 10.1021/jp509646z
[29]
Janssens S, van den Mooter G. J. Pharm. Pharmacol., 2010, 61(12): 1571.

doi: 10.1211/jpp.61.12.0001
[30]
Aso Y, Yoshioka S, Kojima S. J. Pharm. Sci., 2001, 90(6): 798.

doi: 10.1002/jps.1033
[31]
Moynihan C T, Easteal A J, Bolt M A, Tucker J. J. Am. Ceram. Soc., 1976, 59(1/2): 12.

doi: 10.1111/jace.1976.59.issue-1-2
[32]
Otto D P, de Villiers M M. Curr. Drug Discov. Technol., 2017, 14(2): 72.

doi: 10.2174/1570163812666161201122452
[33]
Crowley K J, Zografi G. Thermochimica Acta, 2001, 380(2): 79.

doi: 10.1016/S0040-6031(01)00662-1
[34]
Newman A, Zografi G. Mol. Pharmaceutics, 2020, 17(6): 1761.

doi: 10.1021/acs.molpharmaceut.0c00181
[35]
James P F. J. Non Cryst. Solids, 1985, 73(1/3): 517.

doi: 10.1016/0022-3093(85)90372-2
[36]
Gutzow I, Schmelzer J, Dobreva A. J. Non Cryst. Solids, 1997, 219: 1.

doi: 10.1016/S0022-3093(97)00246-9
[37]
Gutzow I, Dobreva A. Ber. Bunsenges. Phys. Chem, 1996, 100(9): 1415.

doi: 10.1002/bbpc.19961000910
[38]
Andronis V, Zografi G. J. Non Cryst. Solids, 2000, 271(3): 236.

doi: 10.1016/S0022-3093(00)00107-1
[39]
Yoshioka M, Hancock B C, Zografi G. J. Pharm. Sci., 1994, 83(12): 1700.

doi: 10.1002/jps.2600831211
[40]
Kolodziejczyk K, Grzybowska K, Wojnarowska Z, Dulski M, Hawelek L, Paluch M. Cryst. Growth Des., 2014, 14(7): 3199.

doi: 10.1021/cg401364e
[41]
Zhou D L, Zhang G G Z, Law D, Grant D J W, Schmitt E A. Mol. Pharmaceutics, 2008, 5(6): 927.

doi: 10.1021/mp800169g
[42]
Baghel S, Cathcart H, Redington W, O’Reilly N J. Eur. J. Pharm. Biopharm., 2016, 104: 59.

doi: 10.1016/j.ejpb.2016.04.017
[43]
Marsac P J, Konno H, Taylor L S. Pharm. Res., 2006, 23(10): 2306.

doi: 10.1007/s11095-006-9047-9
[44]
Zhou D L, Zhang G G Z, Law D, Grant D J W, Schmitt E A. J. Pharm. Sci., 2002, 91(8): 1863.

doi: 10.1002/jps.10169
[45]
Carpentier L, Desprez S, Descamps M. J. Therm. Anal. Calorim., 2003, 73(2): 577.

doi: 10.1023/A:1025482230325
[46]
Rault J. J. Non Cryst. Solids, 2000, 271(3): 177.

doi: 10.1016/S0022-3093(00)00099-5
[47]
Johari G P, Goldstein M. J. Chem. Phys., 1970, 53(6): 2372.

doi: 10.1063/1.1674335
[48]
Yu L. Adv. Drug Deliv. Rev., 2001, 48(1): 27.

doi: 10.1016/S0169-409X(01)00098-9
[49]
Kothari K, Ragoonanan V, Suryanarayanan R. Mol. Pharmaceutics, 2014, 11(9): 3048.

doi: 10.1021/mp500229d
[50]
Bhardwaj S P, Arora K K, Kwong E, Templeton A, Clas S D, Suryanarayanan R. Mol. Pharmaceutics, 2013, 10(2): 694.

doi: 10.1021/mp300487u
[51]
Bhardwaj S P, Suryanarayanan R. Mol. Pharmaceutics, 2012, 9(11): 3209.

doi: 10.1021/mp300302g
[52]
Meng F, Gala U, Chauhan H. Drug Dev. Ind. Pharm., 2015, 41(9): 1401.

doi: 10.3109/03639045.2015.1018274 pmid: 25853292
[53]
Mehta M, Ragoonanan V, McKenna G B, Suryanarayanan R. Mol. Pharmaceutics, 2016, 13(4): 1267.

doi: 10.1021/acs.molpharmaceut.5b00853
[54]
Vyazovkin S, Dranca I. J. Phys. Chem. B, 2005, 109(39): 18637.

doi: 10.1021/jp052985i
[55]
Aso Y, Yoshioka S, Kojima S. J. Pharm. Sci., 2004, 93(2): 384.

doi: 10.1002/jps.10526
[56]
Aucamp M, Milne M, Liebenberg W. AAPS Pharmscitech, 2016, 17(5): 1100.

doi: 10.1208/s12249-015-0436-4
[57]
Ngai K L, Magill J H, Plazek D J. J. Chem. Phys., 2000, 112(4): 1887.
[58]
Rodríguez-Hornedo N, Murphy D. J. Pharm. Sci., 1999, 88(7): 651.

doi: 10.1021/js980490h
[59]
Guo Y S, Byrn S R, Zografi G. J. Pharm. Sci., 2000, 89(1): 128.

doi: 10.1002/(SICI)1520-6017(200001)89:1【-逻*辑*与-】#x00026;lt;128::AID-JPS13【-逻*辑*与-】#x00026;gt;3.0.CO;2-Z
[60]
Kawakami K, Miyoshi K, Tamura N, Ida Y, Yamaguchi T. J. Pharm. Sci., 2006, 95(6): 1354.

doi: 10.1002/jps.20458
[61]
Tang X C, Pikal M J, Taylor L S. Pharm. Res., 2002, 19(4): 477.

doi: 10.1023/A:1015147729564
[62]
Gordon M, Taylor J S. J. Appl. Chem., 2007, 2(9): 493.

doi: 10.1002/jctb.v2:9.n
[63]
Sugisaki M, Suga H, Seki S. Bull. Chem. Soc. Jpn., 1968, 41(11): 2591.

doi: 10.1246/bcsj.41.2591
[64]
Miller D P, Lechuga-Ballesteros D. Pharm. Res., 2006, 23(10): 2291.

doi: 10.1007/s11095-006-9095-1
[65]
Rumondor A C F, Jackson M J, Taylor L S. Cryst. Growth Des., 2010, 10(2): 747.

doi: 10.1021/cg901157w
[66]
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Expert Opin. Drug Deliv., 2020, 17(10): 1411.

doi: 10.1080/17425247.2020.1796631
[67]
Kawakami K. Pharmaceutics, 2019, 11(5): 202.

doi: 10.3390/pharmaceutics11050202
[68]
Edueng K, Bergstrom CAS, Grasjo J, Mahlin D. Pharmaceutics, 2019, 11(9): 425.

doi: 10.3390/pharmaceutics11090425
[69]
Crowley K J, Zografi G. J. Pharm. Sci., 2002, 91(2): 492.

doi: 10.1002/jps.10028
[70]
Surana R, Pyne A, Suryanarayanan R. Pharm. Res., 2004, 21(7): 1167.

doi: 10.1023/B:PHAM.0000033003.17251.c3
[71]
Ghebremeskel A N, Vemavarapu C, Lodaya M. Pharm. Res., 2006, 23(8): 1928.

doi: 10.1007/s11095-006-9034-1
[72]
Joshi A B, Patel S, Kaushal A M, Bansal A K. Adv. Powder Technol., 2010, 21(4): 452.

doi: 10.1016/j.apt.2010.01.006
[73]
Rams-Baron M, Wojnarowska Z, Grzybowska K, Dulski M, Knapik J, Jurkiewicz K, Smolka W, Sawicki W, Ratuszna A, Paluch M. Mol. Pharmaceutics, 2015, 12(10): 3628.

doi: 10.1021/acs.molpharmaceut.5b00351
[74]
Thakral N K, Mohapatra S, Stephenson G A, Suryanarayanan R. Mol. Pharmaceutics, 2015, 12(1): 253.

doi: 10.1021/mp5005788
[75]
Imamura K, Nomura M, Tanaka K de Kataoka N, Oshitani J, Imanaka H, Nakanishi K. J. Pharm. Sci., 2010, 99(3): 1452.

doi: 10.1002/jps.21890
[76]
Zhang GGZ, Law D, Schmitt EA, Qiu Y. Adv. Drug Delivery Rev., 2004, 56(3): 371.

doi: 10.1016/j.addr.2003.10.009
[77]
Lust A, Lakio S, Vintsevits J, Kozlova J, Veski P, Heinämäki J, Kogermann K. Int. J. Pharm., 2013, 456(1): 41.

doi: 10.1016/j.ijpharm.2013.08.036
[78]
Hancock B C, Shamblin S L, Zografi G. Pharm. Res., 1995, 12(6): 799.

doi: 10.1023/A:1016292416526
[79]
Metre S, Mukesh S, Samal S K, Chand M, Sangamwar A T. Mol. Pharmaceutics, 2018, 15(2): 652.

doi: 10.1021/acs.molpharmaceut.7b01027
[80]
Han R, Xiong H, Ye Z, Yang Y L, Huang T H, Jing Q F, Lu J H, Pan H, Ren F Z, Ouyang D. J. Control. Release, 2019, 311/312: 16.

doi: 10.1016/j.jconrel.2019.08.030
[81]
Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Eur. J. Pharm. Biopharm., 2013, 85(3): 873.

doi: 10.1016/j.ejpb.2013.03.014
[82]
Schilling S U, Bruce C D, Shah N H, Malick A W, McGinity J W. Int. J. Pharm., 2008, 361(1/2): 158.

doi: 10.1016/j.ijpharm.2008.05.035
[83]
Gao Y, Liao J, Qi X, Zhang J J. Int. J. Pharm., 2013, 450(1/2): 290.

doi: 10.1016/j.ijpharm.2013.04.032
[84]
Heng W L, Su M L, Cheng H, Shen P Y, Liang S J, Zhang L H, Wei Y F, Gao Y, Zhang J J, Qian S. Mol. Pharmaceutics, 2020, 17(1): 84.

doi: 10.1021/acs.molpharmaceut.9b00772
[85]
Qian S, Li Z, Heng W L, Liang S J, Ma D, Gao Y, Zhang J J, Wei Y F. RSC Adv., 2016, 6(108): 106396.
[86]
Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M. Mol. Pharmaceutics, 2015, 12(10): 3610.

doi: 10.1021/acs.molpharmaceut.5b00334
[87]
Li B, Konecke S, Wegiel L A, Taylor L S, Edgar K J. Carbohydr. Polym., 2013, 98(1): 1108.

doi: 10.1016/j.carbpol.2013.07.017
[88]
Wang R N, Han J W, Jiang A, Huang R, Fu T M, Wang L C, Zheng Q, Li W, Li J S. Int. J. Pharm., 2019, 561: 9.

doi: 10.1016/j.ijpharm.2019.02.027
[89]
Qian S, Heng W L, Wei Y F, Zhang J J, Gao Y. Cryst. Growth Des., 2015, 15(6): 2920.

doi: 10.1021/acs.cgd.5b00349
[90]
Wang S R, Heng W L, Wang X J, He X S, Zhang Z F, Wei Y F, Zhang J J, Gao Y, Qian S. Int. J. Pharm., 2020, 588: 119793.
[91]
Trasi N S, Byrn S R. AAPS Pharmscitech, 2012, 13(3): 772.

doi: 10.1208/s12249-012-9801-8
[92]
Buckton G, Darcy P. Int. J. Pharm., 1995, 121(1): 81.

doi: 10.1016/0378-5173(95)00009-8
[93]
Overhoff K A, McConville J T, Yang W, Johnston K P, Peters J I, Williams R O. Pharm. Res., 2008, 25(1): 167.
[94]
Be?rzi?š K, Suryanarayanan R. Cryst. Growth Des., 2018, 18(2): 839.

doi: 10.1021/acs.cgd.7b01305
[95]
Rams-Baron M, Pacułt J, Jędrzejowska A, Knapik-Kowalczuk J, Paluch M. Mol. Pharmaceutics, 2018, 15(9): 3969.

doi: 10.1021/acs.molpharmaceut.8b00428
[96]
Mah P T, Novakovic D, Saarinen J, Landeghem S, Peltonen L, Laaksonen T, Isomäki A, Strachan C J. Pharm. Res., 2017, 34(5): 957.

doi: 10.1007/s11095-016-2046-6
[97]
Wu T, Sun Y, Li N, de Villiers M M, Yu L. Langmuir, 2007, 23(9): 5148.

doi: 10.1021/la070050i
[98]
Novakovic D, Peltonen L, Isomäki A, Fraser-Miller S J, Nielsen L H, Laaksonen T, Strachan C J. Mol. Pharmaceutics, 2020, 17(4): 1248.

doi: 10.1021/acs.molpharmaceut.9b01263
[99]
Jones E C L, Bimbo L M. Pharmaceutics, 2020, 12(3): 214.

doi: 10.3390/pharmaceutics12030214
[100]
Descamps M, Willart J F. Int. J. Pharm., 2018, 5421-2: 186.
[101]
Szklarz G, Adrjanowicz K, Tarnacka M, Pionteck J, Paluch M. J. Phys. Chem. C, 2018, 122(2): 1384.

doi: 10.1021/acs.jpcc.7b10946
[102]
Inoue Y, Iohara D, Sekiya N, Yamamoto M, Ishida H, Sakiyama Y, Hirayama F, ARIMA H, Uekama K. Int. J. Pharm., 2016, 509(1/2): 338.

doi: 10.1016/j.ijpharm.2016.06.018
[103]
Inoue Y, Sekiya N, Yamamoto M, Iohara D, Hirayama F, Uekama K. Chem. Pharm. Bull., 2015, 63(5): 318.

doi: 10.1248/cpb.c14-00733
[1] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[2] Hongjuan Wang, Mi Shi, Lu Tian, Liang Zhao, Meiqin Zhang. Methods for Studying the Age Determination of Fingermarks [J]. Progress in Chemistry, 2019, 31(5): 654-666.
[3] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[4] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[5] Liu Xin, Zhao Hailei, Xie Jingying, Lv Pengpeng, Wang Ke, Cui Jiajia. SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 336-348.
[6] Guo Yan, Peng Bo, Zhang Chunyu, Zhang Xuequan. Morphology of Polypropylene in-Reactor Alloys [J]. Progress in Chemistry, 2015, 27(12): 1815-1821.
[7] Yang Jiexin, Liu Lei, Xu Junting. Crystalline Micelles of Block Copolymers [J]. Progress in Chemistry, 2014, 26(11): 1811-1820.
[8] Rao Lu, Jiang Yanxia, Zhang Binwei, You Lexing, Li Zhanhong, Sun Shigang. Electrocatalytic Oxidation of Ethanol [J]. Progress in Chemistry, 2014, 26(05): 727-736.
[9] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[10] Cheng Long, Lü Xiaofeng, Li Ming, Zhang Lin, Hou Hongwei. Study on Third-Order Nonlinear Optical Properties of Functional Complexes [J]. Progress in Chemistry, 2013, 25(10): 1625-1630.
[11] Sun Fan, Xu Min, Li Kerang, Zhang Shuai, Liu Pu*. Dissolution and Chemical Modification of Chitin and Chitosan in Ionic Liquids [J]. Progress in Chemistry, 2013, 25(05): 832-837.
[12] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[13] Dong Huanli, Hu Wenping. Orientation, Crystallization and Device Applications of Conjugated Polymers [J]. Progress in Chemistry, 2011, 23(6): 1041-1049.
[14] . A New Vision in the Research of Biomass Resources: Complete-Lignocellulose-Dissolution System [J]. Progress in Chemistry, 2010, 22(0203): 472-481.
[15] Liu Chuanfu Zhang Aiping Li Weiying Sun Runcang. Dissolution of Cellulose in Novel Green Solvent Ionic Liquids and Its Application [J]. Progress in Chemistry, 2009, 21(09): 1800-1806.