中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 2049-2063 DOI: 10.7536/PC200404 Previous Articles   Next Articles

• Review •

Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation

Weiyang Lv1,**(), Ji’an Sun1, Yuyuan Yao1, Miao Du2, Qiang Zheng2   

  1. 1 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
    2 Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Contact: Weiyang Lv
  • Supported by:
    the National Natural Science Foundation of China(No. 51873180); the National Natural Science Foundation of China(51973183)
Richhtml ( 69 ) PDF ( 1003 ) Cited
Export

EndNote

Ris

BibTeX

As a typical representative of inorganic layered materials, layered double hydroxide(LDH) has attracted intensive interest in the well-established and advanced fields of applications. However, current studies on the function optimization of LDH mainly focus on tuning the composition, interlayer anions and particle size, ignoring the relationship between the morphology and property. This review starts with a brief introduction of the basic structure and property of LDH, and then summarizes the LDH synthetic methods of the traditional hexagonal platelets and novel morphologies like microspheres, nanocages, nanowires and nanorings. To improve the comprehensive performance of LDH composite materials, the construction mechanism has been deeply explored through controlling the reaction condition and formulation, as well as the surface property of matrix. In addition, we also discuss the potential applications of LDH composites in water remediation as the adsorbents, catalysts and separation materials. Finally, the present difficulties and development trends of controlling synthesis of LDH are prospected.

Contents

1 Introduction

2 Basic structure and property of LDH

2.1 Composition and structure of LDH

2.2 Characteristic property of LDH

3 Preparation methods of LDH

3.1 Synthesis of LDH with traditional morphology

3.2 Synthesis of LDH with novel morphology

4 Controllable preparation of LDH composites

4.1 Effect of reaction formulation

4.2 Effect of reaction condition

4.3 Effect of surface property

5 Water remediation by LDH materials

5.1 Adsorbents

5.2 Catalysts

5.3 Separation materials

6 Conclusion and outlook

Fig.1 Schematic representation of the structure of LDH, the general elemental composition is also indicated[18]
Fig.2 (a~d) Illustrations of the crystal structure and the screw dislocation-driven growth of 2D LDH into nanoplates and nanoflowers,(e, f) SEM images of LDH with different magnifications,(g, h) tapping mode AFM images of LDH[57]
Fig.3 TEM and SEM images of LDH synthesized by sacrificial template method with different morphologies: (a) core-shell microspheres[85],(b) yolk-shell microspheres[85],(c) hollow microspheres[85],(d) nanocages with MOF inside[93],(e) hollow nanocages[93],(f) hollow prism[94],(g) hollow nanospheres[97],(h) 3 D ordered microporous structure[98] and (i) nanowires[99]
Fig.4 TEM images of LDH synthesized by soft template method with different morphologies: (a) belt-like structure[100],(b) nanorods[100],(c) rope-like structure[107],(d) core-shell microspheres[108],(e) yolk-shell microspheres[108],(f) hollow microspheres[108],(g, h) nanoscrolls and (i) nanosheets[109]
Fig.5 TEM images of the CoAl-LDH at different reaction times: (a) 0.5 h,(b) 1 h,(c) 1.5 h,(d) 2 h,(e) 2.5 h and (f) 3 h.(g) The size distributions of both nanosheet and nanoring at different reaction times[112]
Fig.6 SEM images of PVDF@LDH composite fibrous membranes synthesized by (a) MgAl(NO 3) and (b) MgAl(SO 4), (c) Schematic illustration of the growth mechanism of LDH on PVDF nanofiber surface[122]
Fig.7 SEM images of the LDH grown on the modified SiO 2nanofibers at different reaction times: (a) 3 h,(b) 6 h,(c) 12 h and (d) 24 h[126]
Table 1 The performance comparison of LDH with different morphologies in water treatment
[1]
Zubair M , Daud M , McKay G , Shehzad F , Al-Harthi M A . Appl. Clay Sci., 2017, 143: 279.
[2]
Atienzar P , de Victoria-Rodriguez M, Juanes O , Carlos Rodriguez-Ubis J, Brunet E , Garcia H . Energy Environ. Sci., 2011, 4: 4718.
[3]
Cai Z , Bu X , Wang P , Ho J C , Yang J , Wang X . J. Mater. Chem. A, 2019, 7: 5069.
[4]
Pan Z , Jiang Y , Yang P , Wu Z , Tian W , Liu L , Song Y , Gu Q , Sun D , Hu L . ACS Nano, 2018, 12: 2968.
[5]
Jiang Y , Song Y , Li Y , Tian W , Pan Z , Yang P , Li Y , Gu Q , Hu L . ACS Appl . Mater. Interfaces, 2017, 9: 37645.
[6]
Naderi Kalali E, Wang X , Wang D Y. J. Mater. Chem. A, 2016, 4: 2147.
[7]
Pang X , He Y , Jung J , Lin Z . Science, 2016, 353: 1268.
[8]
Sun Y , Xia Y . Science, 2002, 298: 2176.
[9]
Cavas L , Yildiz P G , Mimigianni P , Sapalidis A , Nitodas S . J. Coat. Technol. Res., 2018, 15: 105.
[10]
Lv W , Mei Q , Du M , Xiao J , Ye W , Zheng Q . J. Phys. Chem. C, 2016, 120: 14435.
[11]
Lee G , Na W , Kim J , Lee S , Jang J . J. Mater. Chem. A, 2019, 7: 17637.
[12]
Roldan Cuenya B. Thin Solid Films, 2010, 518: 3127.
[13]
Liu Y , Wei J , Tian Y , Yan S . J. Mater. Chem. A, 2015, 3: 19000.
[14]
Tan C , Cao X , Wu X J , He Q , Yang J , Zhang X , Zhang H . Chem. Rev., 2017, 117: 6225.
[15]
Wang Q , O'Hare D . Chem. Rev., 2012, 112: 4124.
[16]
Ma R , Sasaki T . Accounts Chem. Res., 2015, 48: 136.
[17]
Sideris P , Nielsen U , Gan Z , Grey C . Science, 2008, 321: 113.
[18]
Pavlovic M , Rouster P , Oncsik T , Szilagyi I . Chempluschem, 2017, 82: 121.
[19]
Yan K , Liu Y , Lu Y , Chai J , Sun L . Catal. Sci. Technol., 2017, 7: 1622.
[20]
Yan D , Lu J , Wei M , Han J , Ma J , Li F , Duan X . Angew. Chem. Int. Edit., 2009, 48: 3073.
[21]
Millange F , Walton R , Lei L , O'Hare D . Chem. Mater., 2000, 12: 1990.
[22]
Iglesias A H , Ferreira O P , Gouveia D X , Souza Filho A G, de Paiva J A C, Mendes Filho J , Alves O L . J. Solid State Chem., 2005, 178: 142.
[23]
Lue Z , Duan X . Chinese J. Catal., 2008, 29: 839.
[24]
Omwoma S , Chen W , Tsunashima R , Song Y F . Coordin. Chem. Rev., 2014, 258: 58.
[25]
Feng J , He Y , Liu Y , Du Y , Li D . Chem. Soc. Rev., 2015, 44: 5291.
[26]
Wang Y , Yan D , El Hankari S, Zou Y , Wang S . Adv. Sci., 2018, 5: 1800064.
[27]
Zhu J , Zhu Z , Zhang H , Lu H , Qiu Y . RSC Adv., 2019, 9: 2284.
[28]
Mohapatra L , Parida K . J. Mater. Chem. A, 2016, 4: 10744.
[29]
Jobbagy M , Iyi N . J. Phys. Chem. C, 2010, 114: 18153.
[30]
Bellotto M , Rebours B , Clause O , Lynch J , Bazin D , Elkaïm E . J. Phys. Chem., 1996, 100: 8527.
[31]
Tichit D , Layrac G , Gerardin C . Chem. Eng. J., 2019, 369: 302.
[32]
Shao M , Zhang R , Li Z , Wei M , Evans D G , Duan X . Chem. Commun., 2015, 51: 15880.
[33]
Xu Z P , Zhang J , Adebajo M O , Zhang H , Zhou C . Appl. Clay Sci., 2011, 53: 139.
[34]
Frost R L , Weier M L , Clissold M E , Williams P A . Spectrochim. Acta. A, 2003, 59: 3313.
[35]
Adachi-Pagano M , Forano C , Besse J P . J. Mater. Chem., 2003, 13: 1988.
[36]
Yu J , Wang Q , O'Hare D , Sun L . Chem. Soc. Rev., 2017, 46: 5950.
[37]
Kühl S , Schumann J , Kasatkin I , Hävecker M , Schlögl R , Behrens M . Catal. Today, 2015, 246: 92.
[38]
Wang X , Lin Y , Su Y , Zhang B , Li C , Wang H , Wang L . Electrochimica Acta, 2017, 225: 263.
[39]
San Román M S, Holgado M J , Jaubertie C , Rives V. Solid State Sci., 2008, 10: 1333.
[40]
Okamoto K , Iyi N , Sasaki T . Appl. Clay Sci., 2007, 37: 23.
[41]
Tsukanov A A , Psakhie S G . Sci. Rep., 2016, 6: 19986.
[42]
Bravo-Suárez J J , Páez-Mozo E A , Ted Oyama S . Micropor. Mesopor. Mat., 2004, 67: 1.
[43]
Khan A I , O’Hare D . J. Mater. Chem., 2002, 12: 3191.
[44]
Bravo-Suárez J J , Páez-Mozo E A , Oyama S T . Química Nova, 2004, 27: 601.
[45]
Li L , Feng Y J , Li Y S , Zhao W R , Shi J L . Angew. Chem. Int. Edit., 2009, 48: 5888.
[46]
Mishra G , Dash B , Pandey S . Appl. Clay Sci., 2018, 153: 172.
[47]
Tsyganok A , Suzuki K , Hamakawa S , Takehira K , Hayakawa T . Chem. Lett., 2001, 1: 24.
[48]
Millange F , Walton R I , O'Hare D . J. Mater. Chem., 2000, 10: 1713.
[49]
Meng W , Li F , Evans D G , Duan X . Mater. Chem. Phys., 2004, 86: 1.
[50]
Wei M , Shi S , Wang J , Li Y , Duan X . J. Solid State Chem., 2004, 177: 2534.
[51]
Aisawa S , Takahashi S , Ogasawara W , Umetsu Y , Narita E . J. Solid State Chem., 2001, 162: 52.
[52]
Zhao Y , Li F , Zhang R , Evans D G , Duan X . Chem. Mater., 2002, 14: 4286.
[53]
Evans D , Duan X . Chem. commun, 2006, 5: 485.
[54]
李天( Li T ), 郝晓杰( Hao X J ), 白莎( Bai S ), 赵宇飞( Zhao Y F ), 宋宇飞( Song Y F ). 物理化学学报( Acta Physico-Chimica Sinica), 2020, 36( 9): 1912005.
[55]
Ogawa M , Kaiho H . Langmuir, 2002, 18: 4240.
[56]
Oh J M , Hwang S H , Choy J H . Solid State Ionics, 2002, 151: 285.
[57]
Forticaux A , Dang L , Liang H , Jin S . Nano Letters, 2015, 15: 3403.
[58]
Morel-Desrosiers N , Pisson J , Israëli Y , Taviot-GuÉho C , Besse J P , Morel J P . J. Mater. Chem., 2003, 13: 2582.
[59]
Bontchev R P , Liu S , Krumhansl J L , Voigt J , Nenoff T M . Chem. Mater., 2003, 15: 3669.
[60]
S P. Newman , Jones W. New J. Chem., 1998, 22: 105.
[61]
Kukkadapu R K , Witkowski M S , Amonette J E . Chem. Mater., 1997, 9: 417.
[62]
Xing Y , Li D , Ren L L , Evans D G , Duan X . Acta Chim. Sinica, 2003, 61: 267.
[63]
Newman S P , Jones W . J. Solid State Chem., 1999, 148: 26.
[64]
Malki K , Roy A , Besse J P . Eur. J. Solid State Inorg. Chem., 1989, 20: 339.
[65]
Ogawa M , Asai S . Chem. Mater., 2000, 12: 3253.
[66]
Zhang J , Zhang F , Ren L , Evans D G , Duan X . Mater. Chem. Phys., 2004, 85: 207.
[67]
Ren L , He J , Zhang S , Evans D G , Duan X . J. Mol. Catal. B: Enzym., 2002, 18: 3.
[68]
Boehm H P , Steinle J , Vieweger C . Angew. Chem. Int. Edit., 1977, 16: 265.
[69]
Valente J S , Cantu M S , Figueras F . Chem. Mater., 2008, 20: 1230.
[70]
Shedam M R , Venkateswara Rao A . Mater. Chem. Phys., 1998, 52: 263.
[71]
赵芸( Zhao Y ), 矫庆泽( Jiao Q Z ), 李峰( Li F ), Evans D. G., 段雪(Duan X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2001, 17( 6): 830.
[72]
De la Hoz A, Diaz-Ortiz A , Moreno A . Chem. Soc. Rev., 2005, 34: 164.
[73]
Tichit D , Rolland A , Prinetto F , Fetter G , de Jesus Martinez-Ortiz M, Valenzuela M A , Bosch P . J. Mater. Chem., 2002, 12: 3832.
[74]
Fetter G , Hernández F , Maubert A M , Lara V H , Bosch P . J. Porous Mat., 1997, 4: 27.
[75]
Aramendı M A , Borau V , Jimenez U , Marinas J M , Ruiz J R , Urbano F J . J. Solid State Chem., 2002, 168: 156.
[76]
Jitianu M , Bãlãsoiu M , Zaharescu M , Jitianu A , Ivanov A . J. Sol-Gel Sci. Techn., 2000, 19: 453.
[77]
Ma R , Liang J , Liu X , Sasaki T . J. Am. Chem. Soc., 2012, 134: 19915.
[78]
Ma R , Liu Z , Takada K , Iyi N , Bando Y , Sasaki T . J. Am. Chem. Soc., 2007, 129: 5257.
[79]
Ma R , Liang J , Takada K , Sasaki T . J. Am. Chem. Soc., 2011, 133: 613.
[80]
Del Arco M , Carriazo D , Gutierrez S , Martin C , Rives V. Inorg. Chem., 2004, 43: 375.
[81]
Lei X , Yang L , Zhang F , Duan X . Chem. Eng. Sci., 2006, 61: 2730.
[82]
Tongamp W , Zhang Q , Saito F . J. Mater. Sci., 2007, 42: 9210.
[83]
Nagaraju G , Sekhar S C , Bharat L K , Yu J S . ACS Nano, 2017, 11: 10860.
[84]
Jafari Foruzin L, Rezvani Z. Ultrason. Sonochem., 2019, 64: 104919.
[85]
Shao M , Ning F , Zhao Y , Zhao J , Wei M , Evans D G , Duan X . Chem. Mater., 2012, 24: 1192.
[86]
Wang W , Zhang N , Shi Z , Ye Z , Gao Q , Zhi M , Hong Z . Chem. Eng. J., 2018, 338: 55.
[87]
Sudare T , Zenzai A , Tamura S , Kiyama M , Hayashi F , Teshima K . Crystengcomm, 2019, 21: 7211.
[88]
Sun Y , Gao X , Yang N , Tantai X , Xiao X , Jiang B , Zhang L . Ind. Eng. Chem. Res., 2019, 58: 7937.
[89]
Pan J , Wang F , Zhang L , Song S , Zhang H . Inorg. Chem. Front., 2019, 6: 220.
[90]
Li Z , Han F , Li C , Jiao X , Chen D . Chem-Asian J., 2018, 13: 1129.
[91]
Zhou X , Mu X , Cai W , Wang J , Chu F , Xu Z , Hu Y . ACS Appl. Mater. Interfaces, 2019, 11: 41736.
[92]
Guan X , Huang M , Yang L , Wang G , Guan X . Chem. Eng. J., 2019, 372: 151.
[93]
Jiang Z , Li Z , Qin Z , Sun H , Jiao X , Chen D . Nanoscale, 2013, 5: 11770.
[94]
Yu L , Yang J F , Guan B Y , Lu Y , Lou X W . Angew. Chem. Int. Edit., 2018, 57: 172.
[95]
Li L , Ma R , Iyi N , Ebina Y , Takada K , Sasaki T . Chem. Commun., 2006, 29: 3125.
[96]
Zong Y , Li K , Tian R , Lin Y , Lu C . Nanoscale, 2018, 10: 23191.
[97]
Gunawan P , Xu R . Chem. Mater., 2009, 21: 781.
[98]
Geraud E , Rafqah S , Sarakha M , Forano C , Prevot V , Leroux F . Chem. Mater., 2008, 20: 1116.
[99]
Memon J , Sun J , Meng D , Ouyang W , Memon M A , Huang Y , Geng J . J. Mater. Chem. A, 2014, 2: 5060.
[100]
Hu G , O'Hare D . J. Am. Chem. Soc., 2005, 127: 17808.
[101]
He J , Li B , Evans D G , Duan X . Colloid Surface A, 2004, 251: 191.
[102]
Sun H , Chu Z , Hong D , Zhang G , Xie Y , Li L , Shi K . J. Alloy Compd., 2016, 658: 561.
[103]
Zhang P , Ouyang S , Li P , Huang Y , Frost R L . Chem. Eng. J., 2019, 360: 1137.
[104]
Yang Y , Fan G , Li F . Mater. Lett., 2014, 116: 203.
[105]
Zhang H , Chen H , Azat S , Mansurov Z A , Liu X , Wang J , Wu R . J. Alloy Compd., 2018, 768: 572.
[106]
Wu H , Jiao Q , Zhao Y , Huang S , Li X , Liu H , Zhou M . Mater. Charact., 2010, 61: 227.
[107]
Zhao J , Xie Y , Yuan W , Li D , Liu S , Zheng B , Hou W . J. Mater. Chem. B, 2013, 1: 1263.
[108]
Shao M , Ning F , Zhao J , Wei M , Evans D G , Duan X . Adv. Funct. Mater., 2013, 23: 3513.
[109]
Lv W Y , Du M , Ye W J , Zheng Q . J. Mater. Chem. A, 2015, 3: 23395.
[110]
Ren L , Hu J S , Wan L J , Bai C L . Mater. Res. Bull., 2007, 42: 571.
[111]
Tian L , Wang K , Wo H , Li Z , Song M , Li J , Du X . J. Taiwan Inst. Chem. E., 2019, 96: 273.
[112]
Zhou D , Zhang Q , Wang S , Jia Y , Liu W , Duan H , Sun X . Inorg. Chem., 2020, 59: 1804.
[113]
Chen L , Li C , Wei Y , Zhou G , Pan A , Wei W , Huang B . J. Alloy Compd., 2016, 687: 499.
[114]
Huang P , Liu J , Wei F , Zhu Y , Wang X , Cao C , Song W . Mater. Chem. Front., 2017, 1: 1550.
[115]
Zhong H , Liu T , Zhang S , Li D , Tang P , Alonso-Vante N , Feng Y . J. Energy Chem., 2019, 33: 130.
[116]
Prevot V , Szczepaniak C , Jaber M . J. Colloid Interface Sci., 2011, 356: 566.
[117]
Shi J L , Peng H J , Zhu L , Zhu W , Zhang Q . Carbon, 2015, 92: 96.
[118]
Huo R , Kuang Y , Zhao Z , Zhang F , Xu S . J. Colloid Interface Sci., 2013, 407: 17.
[119]
Tokudome Y , Fukui M , Tarutani N , Nishimura S , Prevot V , Forano C , Takahashi M . Langmuir, 2016, 32: 8826.
[120]
Tokudome Y , Tarutani N , Nakanishi K , Takahashi M . J. Mater. Chem. A, 2013, 1: 7702.
[121]
Wang L , Wang Y , Wang X . Materials, 2017, 10: 1140.
[122]
Mei Q , Lv W , Du M , Zheng Q . RSC Adv., 2017, 7: 46576.
[123]
Jing C , Liu X , Liu X , Jiang D , Dong B , Dong F , Zhang Y . CrystEngComm, 2018, 20: 7428.
[124]
Lai F , Huang Y , Miao Y E , Liu T . Electrochimica Acta, 2015, 174: 456.
[125]
Su D , Tang Z , Xie J , Bian Z , Zhang J , Yang D , Kong Q . Appl. Surf. Sci., 2019, 469: 487.
[126]
Lv W Y , Mei Q Q , Fu H K , Xiao J L , Du M , Zheng Q . J. Mater. Chem. A, 2017, 5: 19079.
[127]
Chen X , Mi F , Zhang H , Zhang H . Mater. Lett., 2012, 69: 48.
[128]
Bai X , Liu Q , Zhang H , Liu J , Li Z , Jing X , Wang J . Electrochimica Acta, 2016, 215: 492.
[129]
Theiss F L , Couperthwaite S J , Ayoko G A , Frost R L . J. Colloid Interface Sci., 2014, 417: 356.
[130]
Dore E , Frau F . J. Water Process. Eng., 2019, 31: 100855.
[131]
Lv L , He J , Wei M , Evans D G , Duan X . J. Hazard. Mater., 2006, 133: 119.
[132]
Wu X , Wang Y , Xu L , Lv L . Desalination, 2010, 256: 136.
[133]
Ji H , Wu W , Li F , Yu X , Fu J , Jia L . J. Hazard. Mater., 2017, 334: 212.
[134]
Zhang Y , Li X , Liu H . Desalin. Water Treat., 2015, 55: 1325.
[135]
Kang J , Levitskaia T G , Park S , Kim J , Varga T , Um W . Chem. Eng. J., 2020, 380.
[136]
He W , Ai K , Ren X , Wang S , Lu L . J. Mater. Chem. A, 2017, 5: 19593.
[137]
Goh K H , Lim T T , Dong Z . Water Res., 2008, 42: 1343.
[138]
Zhou J , Shu W , Gao Y , Cao Z , Zhang J , Hou H , Qian G . RSC Adv., 2017, 7: 20320.
[139]
Jaiswal A , Mani R , Banerjee S , Gautam R K , Chattopadhyaya M C . J. Mol. Liq., 2015, 202: 52.
[140]
Wang W , Zhou J , Achari G , Yu J , Cai W . Colloid Surface A, 2014, 457: 33.
[141]
Otgonjargal E , Kim Y S , Park S M , Baek K , Yang J S . Sep. Sci. Technol., 2012, 47: 2192.
[142]
Liang X , Zang Y , Xu Y , Tan X , Hou W , Wang L , Sun Y . Colloid Surface A, 2013, 433: 122.
[143]
Yang F , Sun S , Chen X , Chang Y , Zha F , Lei Z . Appl. Clay Sci., 2016, 123: 134.
[144]
Ma S , Huang L , Ma L , Shim Y , Islam S M , Wang P , Kanatzidis M G . J. Am. Chem. Soc., 2015, 137: 3670.
[145]
Ma L , Wang Q , Islam S M , Liu Y , Ma S , Kanatzidis M G . J. Am. Chem. Soc., 2016, 138: 2858.
[146]
Xie Y , Yuan X , Wu Z , Zeng G , Jiang L , Peng X , Li H . J. Colloid Interface Sci., 2019, 536: 440.
[147]
Yang Z , Wang F , Zhang C , Zeng G , Tan X , Yu Z , Cui F . RSC Adv., 2016, 6: 79415.
[148]
Guo Y , Zhu Z , Qiu Y , Zhao J . Chem. Eng. J., 2013, 219: 69.
[149]
Darmograi G , Prelot B , Layrac G , Tichit D , Martin-Gassin G , Salles F , Zajac J . J. Phys. Chem. C, 2015, 119: 23388.
[150]
De Sa F P , Cunha B N , Nunes L M . Chem. Eng. J., 2013, 215: 122.
[151]
Zhang Y X , Hao X D , Kuang M , Zhao H , Wen Z Q . Appl. Surf. Sci., 2013, 283: 505.
[152]
Meng Z , Wu M , Zhao S , Jing R , Li S , Shao Y , Zhang Q . Appl. Clay Sci., 2019, 170: 41.
[153]
Bethi B , Sonawane S H , Bhanvase B A , Gumfekar S P . Chem. Eng. Process., 2016, 109: 178.
[154]
Song B , Zeng Z , Zeng G , Gong J , Xiao R , Ye S , Tang X . Adv. Colloid Interfac., 2019, 272: 101999.
[155]
Pan D , Ge S , Zhao J , Tian J , Shao Q , Guo L , Guo Z . Ind. Eng. Chem. Res., 2018, 58: 836.
[156]
Xia S , Qian M , Zhou X , Meng Y , Xue J , Ni Z . Mol. Catal., 2017, 435: 118.
[157]
Zhou T , Hu M , He J , Xie R , An C , Li C , Luo J . Crystengcomm, 2019, 21: 5526.
[158]
Fang P , Wang Z , Wang W . Crystengcomm, 2019, 21: 7025.
[159]
Wu M J , Wu J Z , Zhang J , Chen H , Zhou J Z , Qian G R , Rao Q L . Catal. Sci. Technol., 2018, 8: 1207.
[160]
Wang P , Ng D H L , Zhou M , Li J . Appl. Clay Sci., 2019, 178: 105131.
[161]
Guo X X , Hu T T , Meng B , Sun Y , Han Y F . Appl. Catal. B-Environ., 2020, 260: 118157.
[162]
Fan G , Li F , Evans D G , Duan X . Chem. Soc. Rev., 2014, 43: 7040.
[163]
Zhong P , Yu Q , Zhao J , Xu S , Qiu X , Chen J . J. Colloid Interface Sci., 2019, 552: 122.
[164]
Zhang H , Li G , Deng L , Zeng H , Shi Z . J. Colloid Interface Sci., 2019, 543: 183.
[165]
Wang J , Wang S . Chem. Eng. J., 2018, 334: 1502.
[166]
Li W , Wu P X , Zhu Y , Huang Z J , Lu Y H , Li Y W , Zhu N W . Chem. Eng. J., 2015, 279: 93.
[167]
Hou L , Li X , Yang Q , Chen F , Wang S , Ma Y , Wang D . Sci. Total Environ., 2019, 663: 453.
[168]
Ma Q , Cheng H , Fane A G , Wang R , Zhang H . Small, 2016, 12: 2186.
[169]
Chu Z , Feng Y , Seeger S . Angew. Chem. Int. Edit., 2015, 54: 2328.
[170]
Cui J , Zhou Z , Xie A , Wang Q , Liu S , Lang J , Dai J . J. Membrane Sci., 2019, 573: 226.
[171]
Lv W Y , Mei Q Q , Xiao J L , Du M , Zheng Q . Adv. Funct. Mater., 2017, 27: 9.
[172]
Liu P , Zhang Y , Liu S , Zhang Y , Qu L . Appl. Clay Sci., 2019, 182.
[173]
Lyu H , Hu K , Fan J , Ling Y , Xie Z , Li J . Appl. Surf. Sci., 2019, 500: 144037.
[174]
Zhang L , Xiong Z , Li L , Burt R , Zhao X S . J. Colloid Interface Sci., 2016, 469: 224.
[175]
Zou Y , Liu Y , Wang X , Sheng G , Wang S , Ai Y , Ji Y F , Liu Y H , Hayat T , Wang X K . ACS Sustainable Chemi. Eng., 2017, 5: 3583.
[176]
Li Y , Wang J , Li Z S , Liu Q , Liu J Y , Liu L H , Zhang X F , Yu J . Chem. Eng. J., 2013, 218: 295.
[177]
Wang Q , Wang X , Tian B . Water Sci.Technol., 2018, 77: 2772.
[1] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[2] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[3] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[4] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[5] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.
[6] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[7] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[8] Saba Jamil, Afaaf Rahat Alvi, Shanza Rauf Khan, Muhammad Ramzan Saeed Ashraf Janjua. Layered Double Hydroxides(LDHs): Synthesis & Applications [J]. Progress in Chemistry, 2019, 31(2/3): 394-412.
[9] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.
[10] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[11] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[12] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[13] Meiyao Tang, Yanyan Wang, He Shen, Guangbo Che. Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis [J]. Progress in Chemistry, 2018, 30(11): 1646-1659.
[14] Hao Wang, Bangwei Deng, Wujie Ge, Tao Chen, Meizhen Qu, Gongchang Peng. Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(6): 683-694.
[15] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.