中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 2013-2021 DOI: 10.7536/PC200332 Previous Articles   Next Articles

• Review •

Cathode Denitrification of Microbial Fuel Cells

Rui Zhang1,2, Yun Wu1,2,**(), Lutian Wang1,2, Qiang Wu1,2, Hongwei Zhang1,2   

  1. 1 State Key Laboratory of Separation Membrane and Membrane Processes, TianGong University, Tianjin 300387, China
    2 School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Contact: Yun Wu
  • Supported by:
    the Key Program of National Natural Science Foundation of China(No.51678410); the National Natural Science Foundation of China(No.51878448); and the Key Foundation of Tianjin Education Committee(No.2019ZD06)
Richhtml ( 24 ) PDF ( 1064 ) Cited
Export

EndNote

Ris

BibTeX

The diversity of cathode electron acceptor of microbial fuel cell(MFC) can realize its cathode denitrification, so as to make rational use of the generated electric energy. Therefore, cathode denitrification has become a research direction of MFC, and also provides a new possibility for the removal of nitrogen from actual wastewater. However, there are many factors in the reaction process that will cause NOx-N to compete with other electron acceptors for anode electrons, which affects the utilization of electrons in the cathode denitrification process, resulting in practical problems such as low nitrogen removal efficiency. At present, research has been conducted to make up for the defects of electricity generation by optimizing the structure of MFC and coupling it with other process systems to realize simultaneous nitrification and denitrification, so as to increase the denitrification efficiency and reduce the demand for carbon source, so as to solve the problem of microbial fuel cell cathode denitrification. In this paper, the research progress at home and abroad is reviewed and the future research direction is predicted from the aspects of different denitrification processes of MFC, the factors affecting MFC cathode denitrification, such as MFC process conditions(pH, C/N, DO), polar chamber separation materials, and the composition of cathode denitrification microbial community.

Contents

1 Introduction

2 The forms of MFC denitrification processes

2.1 Different denitrification processes

2.2 Coupling Techniques of MFC

3 The main factors affecting MFC cathode denitrification

3.1 Operating parameters

3.2 Polar compartment separation materials

4 The effect of microbial population on MFC cathode denitrification

5 Outlook

Table 1 The advantages and disadvantages of several different separation materials
[1]
Li N , Wan Y , Wang X . Science of the Total Environment, 2020, 706: 135690.
[2]
Wan Y , Huang Z , Zhou L , Li T , Liao C , Yan X , Li N , Wang X . Environmental Science & Technology, 2020, 54: 3002.
[3]
Park D H , Laivenieks M , Guettler M V , Jain M K , Zeikus J G . Applied And Environmental Microbiology, 1999, 65: 2912.
[4]
Roy D , Rahni M , Pierre P , Yargeau V . Chemical Engineering Journal, 2016, 287: 277.
[5]
Oon Y S , Ong S A , Ho L N , Wong Y S , Oon Y L , Lehl H K , Thung W E . International Journal of Environmental Science and Technology, 2017, 14: 2435.
[6]
Oon Y S , Ong S A , Ho L N , Wong Y S , Oon Y L , Lehl H K , Thung W E . Bioprocess and Biosystems Engineering, 2016, 39: 893.
[7]
Gregory K B , Bond D R , Lovley D R . Environmental Microbiology, 2004, 6: 596.
[8]
Park H I , Kim D K , Choi Y J , Pak D . Process Biochemistry, 2005, 40: 3383.
[9]
Clauwaert P , Rabaey K , Aelterman P , De Schamphelaire L, Ham T H , Boeckx P , Boon N , Verstraete W . Environmental Science & Technology, 2007, 41: 3354.
[10]
Jia Y H , Tran H T , Kim D H , Oh S J , Park D H , Zhang R H , Ahn D H . Bioprocess and Biosystems Engineering, 2008, 31: 315.
[11]
Virdis B , Rabaey K , Yuan Z , Keller J . Water Research, 2008, 42: 3013.
[12]
Zhang G , Zhang H , Zhang C , Zhang G , Yang F , Yuan G , Gao F . Process Biochemistry, 2013, 48: 893.
[13]
Kelly P T , He Z . Bioresource Technology, 2014, 153: 351.
[14]
Zhang J , Zheng P , Zhang M , Chen H , Chen T , Xie Z , Cai J , Abbas G . Bioresource Technology, 2013, 149: 44.
[15]
Puig S , Serra M , Vilar-Sanz A , Cabre M , Baneras L , Colprim J , Dolors Balaguer M. Bioresource Technology, 2011, 102: 4462.
[16]
Li W , Zhang S , Chen G , Hua Y . Applied Energy, 2014, 126: 136.
[17]
Virdis B , Rabaey K , Rozendal R A , Yuan Z , Keller J . Water Research, 2010, 44: 2970.
[18]
Yan H , Saito T , Regan J M . Water Research, 2012, 46: 2215.
[19]
Zhu G , Chen G , Yu R , Li H , Wang C . Process Biochemistry, 2016, 51: 80.
[20]
Li H , Zuo W , Tian Y , Zhang J , Di S , Li L , Su X . Environmental Science and Pollution Research, 2017, 24: 5106.
[21]
Voets J P , Vanstaen H , Verstraete W . Journal of the Water Pollution Control Federation, 1975, 47: 394.
[22]
Sutherson S , Ganczarczyk J J . Water Pollution Research Journal of Canada, 1986, 21: 257.
[23]
Hellinga C , Schellen A , Mulder J W , Van Loosdrecht M C M, Heijnen J J . Water Science and Technology, 1998, 37: 135.
[24]
Peng Y , Zhu G . Applied Microbiology and Biotechnology, 2006, 73: 15.
[25]
Ilies P , Mavinic D S . Water Research, 2001, 35: 2065.
[26]
Yang S , Guo W , Chen Y , Zhou X , Zheng H , Feng X , Yin R , Ren N . RSC Advances, 2014, 4: 52892.
[27]
Li Y , Williams I , Xu Z , Li B , Li B . Applied Energy, 2016, 163: 352.
[28]
Jiang H M. Environmental Engineering Science, 2017, 34: 489.
[29]
Yang Z , Pei H , Hou Q , Jiang L , Zhang L , Nie C . Chemical Engineering Journal, 2018, 332: 277.
[30]
Wang Y , Lin Z , Su X , Zhao P , Zhou J , He Q , Ai H . Chemical Engineering Journal, 2019, 372: 956.
[31]
Xu P , Xiao E , Wu J , He F , Zhang Y , Wu Z . Journal Of Environmental Sciences, 2019, 78: 338.
[32]
Sun J , Li N , Yang P , Zhang Y P , Yuan Y , Lu X W , Zhang H G . International Journal Of Hydrogen Energy, 2020, 45: 10871.
[33]
He Z , Kan J , Wang Y , Huang Y , Mansfeld F , Nealson K H . Environmental Science & Technology, 2009, 43: 3391.
[34]
Zhang F , He Z . Journal of Chemical Technology and Biotechnology, 2012, 87: 153.
[35]
Zhang F , He Z . Process Biochemistry, 2012, 47: 2146.
[36]
Sayess R R , Saikaly P E , El-Fadel M , Li D , Semerjian L . Water Research, 2013, 47: 881.
[37]
Wu Y , Yang Q , Zeng Q , Ngo H H , Guo W , Zhang H . Chemical Engineering Journal, 2017, 316: 315.
[38]
Vijay A , Vaishnava M , Chhabra M . Environmental Science and Pollution Research, 2016, 23: 7744.
[39]
张吉强( Zhang J Q ). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[40]
徐功娣( Xu G D ), 李永峰( Li Y F ), 张永娟( Zhang Y J ). 微生物燃料电池原理与应用(Principle and Application of Microbial Fuel Cell). 哈尔滨:哈尔滨工业大学出版社(Harbin: Harbin Institute of Technology Press), 2012.
[41]
Rozendal R A , Hamelers H V M , Buisman C J N . Environmental Science & Technology, 2006, 40: 5206.
[42]
Cheng K Y , Ginige M P , Kaksonen A H . Environmental Science & Technology, 2012, 46: 10372.
[43]
Xia S , Li J , Wang R . Ecological Engineering, 2008, 32: 256.
[44]
Chen Y , Luo J , Yan Y , Feng L . Applied Energy, 2013, 102: 1197.
[45]
Li M , Wu H , Zhang J , Ngo H H , Guo W , Kong Q . Bioresource Technology, 2017, 240: 157.
[46]
Huang B , Feng H , Wang M , Li N , Cong Y , Shen D . Bioresource Technology, 2013, 132: 91.
[47]
Zhou M , Fu W , Gu H , Lei L . Electrochimica Acta, 2007, 52: 6052.
[48]
Virdis B , Read S T , Rabaey K , Rozendal R A , Yuan Z , Keller J . Bioresource Technology, 2011, 102: 334.
[49]
Virdis B , Rabaey K , Yuan Z , Rozendal R A , Keller J . Environmental Science & Technology, 2009, 43: 5144.
[50]
Chiu Y C , Lee L L , Chang C N , Chao A C . International Biodeterioration & Biodegradation, 2007, 59: 1.
[51]
Yu C P , Liang Z , Das A , Hu Z . Water Research, 2011, 45: 1157.
[52]
Zhang Y , Angelidaki I . Water Research, 2012, 46: 6445.
[53]
Third K A , Burnett N , Cord-Ruwisch R . Biotechnology and Bioengineering, 2003, 83: 706.
[54]
Zhang X , Zhu F , Chen L , Zhao Q , Tao G . Bioresource Technology, 2013, 146: 161.
[55]
Zhang X , Cheng S , Wang X , Huang X , Logan B E . Environmental Science & Technology, 2009, 43: 8456.
[56]
Watson V J , Saito T , Hickner M A , Logan B E . Journal of Power Sources, 2011, 196: 3009.
[57]
侯胜伟( Hou S W ). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology), 2011.
[58]
Walter X A , Merino-Jimenez I , Greenman J , Ieropoulos I . Journal of Power Sources, 2018, 392: 150.
[59]
Zhou Y , Zhao S , Yin L , Zhang J , Bao Y , Shi H . Electroanalysis, 2018, 30: 2145.
[60]
Yan Y , Wang X . Science China-Technological Sciences, 2019, 62: 1657.
[61]
Park H I , Kim J S , Kim D K , Choi Y J , Pak D . Enzyme and Microbial Technology, 2006, 39: 453.
[62]
Yu Y , Zhao J , Wang S , Zhao H , Ding X , Gao K . Environmental Technology, 2017, 38: 3093.
[63]
章静( Zhang J ), 赵丝蒙( Zhao S M ), 周昱宏( Zhou Y H ), 史惠祥( Shi H X ). 浙江大学学报(理学版)(Journal of Zhejang University, Science Edition), 2019, 46: 589.
[64]
王清萍( Wang Q P ), 刘培文( Liu P W ), 翁秀兰( Weng X L ), 陈祖亮( Chen Z L ). 环境工程学报( Chinese Journal of Environmental Science), 2014, 8: 3277.
[65]
侯连刚( Hou L G ). 齐鲁工业大学硕士论文(Master Dissertation of Qilu University of Technology), 2016.
[66]
Vijay A , Chhabra M , Vincent T . Bioresource Technology, 2019, 272: 217.
[67]
Seo Y , Kang H , Chang S , Lee Y Y , Cho K S . Journal of Environmental Science And Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2018, 53: 13.
[68]
钱子牛( Qian Z N ), 杨立格( Yang L G ), 谢倍珍( Xie B Z ), 刘贺清( Liu H Q ), 刘红( Liu H ). 环境工程学报( Chinese Journal of Environmental Science), 2019, 13: 1986.
[1] Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua. Behavior of Metal Ions in Microbial Fuel Cells [J]. Progress in Chemistry, 2014, 26(07): 1244-1254.
[2] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[3] Chen Lixiang, Xiao Yong, Zhao Feng. Biocathodes in Microbial Fuel Cells [J]. Progress in Chemistry, 2012, 24(01): 157-162.
[4] . Hydrogen Production by Microbial Electrolysis Cells [J]. Progress in Chemistry, 2010, 22(04): 748-753.
[5] Liu Hongfang Zheng Bijuan. Microbial Fuel Cells [J]. Progress in Chemistry, 2009, 21(6): 1349-1355.
[6] Mao Yanping Cai Lankun Zhang Lehua Hou Haiping Huang Guangtuan Liu Yongdi. Biocathodes in Microbial Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1672-1677.
[7] Lu Na1,2 Zhou Shungui2 Ni Jinren1**. Mechanism of Energy Generation of Microbial Fuel Cells [J]. Progress in Chemistry, 2008, 20(0708): 1233-1240.
[8] Guan Yi** ,,Zhang Xin. The Research for Microbial Fuel Cells* [J]. Progress in Chemistry, 2007, 19(01): 74-79.