中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 873-881 DOI: 10.7536/PC190928 Previous Articles   Next Articles

• Review •

Continuous Flow Synthesis of Zeolites

Di Pan1, Peng Liu1, Hongbin Zhang2, Yi Tang1,**()   

  1. 1. Department of Chemistry, Fudan University, Shanghai 200433, China
    2. Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
  • Received: Online: Published:
  • Contact: Yi Tang
  • About author:
  • Supported by:
    National Major Research and Development Plan(2018YFA0209402)
Richhtml ( 52 ) PDF ( 595 ) Cited
Export

EndNote

Ris

BibTeX

Due to the wide applications of zeolites in various fields, efficient and reliable synthesis of zeolite has become an important research issue. Compared with traditional high-pressure hydrothermal batch synthesis, continuous flow synthesis is one of the new methods for fast preparation of zeolite owing to its short crystallization time and high space-time yield. The high crystalline zeolites can be harvested in minute- and even second-level thanks to the specific characteristics of continuous flow reactors(CFR), such as low thermal lag, controllable mass transfer and good expansibility, which significantly enhance the synthesis efficiency and controllability. In this paper, based on the recent progress, the component of CFR equipment, the advantages and limitations of CFR for zeolite synthesis, and the future applications are introduced and prospected.

Contents

1 Introduction

2 Structure of CFR equipment

2.1 Feeding unit

2.2 Fluid channel

2.3 Heating unit

2.4 Cooling unit

2.5 Back pressure regulator

2.6 Monitor system

3 Features of synthesis process and product

3.1 Features of CFR reaction

3.2 The effective control of crystallization process

3.3 New progress of CFR techniques

4 Limitation of CFR application

4.1 Viscosity

4.2 Blockage

4.3 Crystal aggregation

5 Conclusion and prospect

Fig.1 The scheme of CFR system for zeolite synthesis
Fig.2 (a) Scheme of the ultrafast CFR synthesis system of ZSM-5,(b) the system temperature changing with time and(c) the system pressure changing with time[32]. Copyright 2016, PNAS
Fig.3 (a) The temperature at different positions in autoclaves changing with time and(b) the system temperature in CFR changing with time through external heating method[37]. Copyright 2016, Elsevier
Table 1 The crystallization time of zeolites and the corresponding conditions in CFR systems
Fig.4 (a) The29Si MASNMR spectrogram of ERI zeolite synthesized by batch and CFR[39] and(b) the N2 adsorption-desorption curve of ZSM-5 zeolites synthesized by batch and CFR[32]. Copyright 2016, PNAS
Fig.5 NaA zeolites with different diameter distribution synthesized from(a) microchannel CFR and(d) autoclave[28]. Copyright 2006, Elsevier
Fig.6 The theoretical crystallization rate curve of NaA calculated by Arrhenius equation[37]. Copyright 2016, Elsevier
Fig.7 The XRD spectrogram of ZSM-5 product at different time during the ultrafast synthesis at high temperature of(a) 260 ℃ and (b) 300 ℃[32]. Copyright 2016, PNAS
Fig.8 The channel blocked by the aggregation of zeolite crystals[31]. Copyright 2013, Elsevier
Fig.9 The TEM image of(a)ZSM-5[32] and(d)ERI[39]zeolite form CFR synthesis and TEM image of(b)ZSM-5 and(c)ERI zeolite from batch synthesis. Copyright 2016, PNAS
[1]
Davis M E , Nature, 2002,417:813. doi: 10.1038/nature00785 https://www.ncbi.nlm.nih.gov/pubmed/12075343

pmid: 12075343
[2]
Herlihy M . Chem. Rev., 1999,99:635. doi: 10.1021/cr9600971 https://www.ncbi.nlm.nih.gov/pubmed/11749428

pmid: 11749428
[3]
Lok B M , Messina C A , Patton R L , Gajek R T , Cannan T R , Flanigen E M . J. Am. Chem. Soc., 1984,106:6092. doi: 10.1021/ja00332a063 https://pubs.acs.org/doi/abs/10.1021/ja00332a063
[4]
Wilson S T , Lok B M , Messina C A , Cannan T R . Flanigen E M. ChemInform., 1982,13:1146.
[5]
Cundy C S , Cox P A . ChemInform., 2003,103:663.
[6]
Davis M E . Accounts Chem. Res., 1993,26:111.
[7]
Davis M E , Lobo R F . Chem. Mater., 1992,4:756.
[8]
Tosheva L , Valtchev V P . ChemInform., 2005,17:2494.
[9]
Kuhl, G, Micropor . Mesopor. Mater., 1998,22:515 doi: 10.1016/S1387-1811(98)00133-4 https://linkinghub.elsevier.com/retrieve/pii/S1387181198001334
[10]
Zaarour M , Dong B , Naydenova I , Retoux R , Mintova S . Micropor. Mesopor. Mater., 2014,189:11. doi: 10.1016/j.micromeso.2013.08.014 https://linkinghub.elsevier.com/retrieve/pii/S1387181113003909
[11]
Kim S D , Noh S H , Park J W , Kim W J . Micropor. Mesopor. Mater., 2006,92:181. doi: 10.1016/j.micromeso.2006.01.009 https://linkinghub.elsevier.com/retrieve/pii/S1387181106000175
[12]
Cundy C S , Cox P A . Micropor. Mesopor. Mater., 2005,82:1. doi: 10.1016/j.micromeso.2005.02.016 https://linkinghub.elsevier.com/retrieve/pii/S1387181105000934
[13]
Chen L H , Li X Y , Rooke J C , Zhang Y H , Yang X Y , Tang Y , Xiao F S , Su B L . J. Mater. Chem., 2012,22:17381. doi: 10.1039/c2jm31957h http://xlink.rsc.org/?DOI=c2jm31957h
[14]
Li J , Corma A , Yu J . Chem. Soc. Rev., 2015,44:7112. doi: 10.1039/c5cs00023h https://www.ncbi.nlm.nih.gov/pubmed/25740693

pmid: 25740693
[15]
Bilecka I , Niederberger M . Nanoscale, 2010,2:1358. doi: 10.1039/b9nr00377k https://www.ncbi.nlm.nih.gov/pubmed/20845524

pmid: 20845524
[16]
Du H , Min F , Xu W , Meng X , Pang W . J. Mater. Chem., 1997,7:551.
[17]
Somani O G , Choudhari A L , Rao B S , Mirajkar S P . Mater. Chem. Phys., 2003,82:538.
[18]
Cheng X , Mao J , Lv X , Hua T , Cheng X , Long Y , Tang Y . J. Mater. Chem. A, 2014,2:1247.
[19]
Koekkoek A J J , Degirmenci V , Hensen E J M . J. Mater. Chem., 2011,21:9279.
[20]
Zhang L , Huang Y . J. Mater. Chem. A, 2015,3:4522.
[21]
Zhang L , Yao J , Zeng C , Xu N . Chem. Commun., 2003,17:2244.
[22]
Mehla S , Da J , Jampaiah D , Periasamy S , Nafady A , Bhargava S K . Catal. Sci. Technol., 2019,9:3582. doi: 10.1039/C9CY00518H http://xlink.rsc.org/?DOI=C9CY00518H
[23]
Xue X , Zhou Z , Peng B , Zhu M M , Zhang Y J , Ren W , Ye Z G , Chen X , Liu M . RSC Adv., 2015,5:79249. doi: 10.1039/C5RA13349A http://xlink.rsc.org/?DOI=C5RA13349A
[24]
Aimable A , Muhr H , Gentric C , Bernard F , Le Cras F . Aymes D. Powder Technol., 2009,190:99.
[25]
Tonhauser C , Natalello A , Löwe H , Frey H . Macromolecules, 2012,45:9551.
[26]
Thome R , Schmidt H , Tissler A , Prescher D . EP 0402801, 1992.
[27]
Braun I , Schulz-Ekloff G , Wöhrle D , Lautenschläger W . Micropor. Mesopor. Mater., 1998,23:79.
[28]
Ju J , Zeng C , Zhang L , Xu N . Chem. Eng. J., 2006,116:115. doi: 10.1016/j.cej.2005.11.006 https://linkinghub.elsevier.com/retrieve/pii/S1385894705004249
[29]
Pan Y , Ju M , Yao J , Zhang L , Xu N . Chem. Commun.(Camb), 2009,7233.
[30]
Pan Y , Yao J , Zhang L , Xu N . Ind. Eng. Chem. Res., 2009,48:8471.
[31]
Yu L , Pan Y , Wang C , Zhang L . Chem. Eng. J., 2013,219:78.
[32]
Liu Z , Okabe K , Anand C , Yonezawa Y , Zhu J , Yamada H , Endo A , Yanaba Y , Yoshikawa T , Ohara K , Okubo T , Wakihara T . Proc. Natl. Acad. Sci. U. S. A., 2016,113:14267. doi: 10.1073/pnas.1615872113 https://www.ncbi.nlm.nih.gov/pubmed/27911823

pmid: 27911823
[33]
Liu Z , Wakihara T , Nishioka D , Oshima K , Takewaki T , Okubo T . Chem. Mater., 2014,26:2327.
[34]
Liu Z , Wakihara T , Nomura N , Matsuo T , Anand C , Elangovan S P , Yanaba Y , Yoshikawa T , Okubo T . Chem. Mater., 2016,28:4840.
[35]
Liu Z , Wakihara T , Oshima K , Nishioka D , Hotta Y , Elangovan S P , Yanaba Y , Yoshikawa T , Chaikittisilp W , Matsuo T , Takewaki T , Okubo T . Angew. Chem. Int. Edit., 2015,54:5683. doi: 10.1002/anie.201501160 http://doi.wiley.com/10.1002/anie.201501160
[36]
Peng C , Liu Z , Okubo T , Wakihara T . Chem. Lett., 2018,47:654.
[37]
Vandermeersch T , Van Assche T R C , Denayer J F M , De Malsche W . Micropor. Mesopor. Mater., 2016,226:133.
[38]
Zhu J , Liu Z , Endo A , Yanaba Y , Yoshikawa T , Wakihara T , Okubo T . CrystEngComm., 2017,19:632.
[39]
Zhu J , Liu Z , Iyoki K , Anand C , Yoshida K , Sasaki Y , Sukenaga S , Ando M , Shibata H , Okubo T , Wakihara T . Chem. Commun.(Camb), 2017,53:6796.
[40]
Zhu J , Liu Z , Sukenaga S , Ando M , Shibata H , Okubo T , Wakihara T . Micropor. Mesopor. Mater., 2018,268:1.
[41]
Gunther A , Jensen K F . Lab. Chip., 2006,6:1487. doi: 10.1039/b609851g https://www.ncbi.nlm.nih.gov/pubmed/17203152

pmid: 17203152
[42]
Yao X , Zhang Y , Du L , Liu J , Yao J . Renew. Sust. Energ. Rev., 2015,47:519.
[43]
Iwasaki T , Kawano N , Yoshida J I . Org. Process. Res. Dev., 2006,10:1126.
[44]
M M Helmkamp A , Davis M E . Annu. Rev. Mater. Res., 1995,25:161.
[45]
Berthier E , Dostie A M , Lee U N , Berthier J , Theberge A B . Anal. Chem., 2019,91:8739. doi: 10.1021/acs.analchem.9b01429 https://www.ncbi.nlm.nih.gov/pubmed/31260266

pmid: 31260266
[46]
Luo G , Du L , Wang Y , Lu Y , Xu J . Particuology., 2011,9:545.
[47]
Park M B , Ahn S H , Ahn N H , Hong S B . Chem. Commun.(Camb), 2015,51:3671.
[48]
唐文来(Tang W L), 庞文琴(Pang W Q), 于吉红(Yu J H), 霍启升(Huo Q S), 陈接胜(Chen J S) . 分子筛与多孔材料化学 (Chemistry-Zeolites and Porous Materials). 北京:科学出版社 Beijing: Science Press), 2004. 219.
[49]
Price S , Rime B , Su W , Peters B , Christenson H , Hughes C , Sun C C , Veesler S , Pan H , Brandel C , Biscans B , Meekes H , Rosbottom I , Roth W J , Seton L , Taulelle F , Black S , Threlfall T , Vekilov P , Poornachary S , Diemand J , Toroz D , Salvalaglio M , Tipduangta P , Sefcik J , Booth S , Rasmuson A , Janbon S , Ter Horst J , Simone E , Hammond R , Bertran C A , Vetter T , Sear R , De Yoreo J , Harris K , Ristic R , Kavanagh A , Roberts K , Breynaert E , Myerson A , Coquerel G , Wu D , Colfen H , Cuppen H , Smets M , Wu D T . Faraday Discuss, 2015,179:503. doi: 10.1039/c5fd90039e https://www.ncbi.nlm.nih.gov/pubmed/26081969

pmid: 26081969
[50]
Sun Q , Wang N , Bai R , Chen X , Yu J . J. Mater. Chem. A, 2016,4:14978.
[51]
Yu Q , Zhang Q , Liu J , Li C , Cui Q . CrystEngComm., 2013,15. doi: 10.1039/C3CE41322E https://www.ncbi.nlm.nih.gov/pubmed/24353476

pmid: 24353476
[52]
Shah R K , Kim J W , Agresti J J , Weitz D A , Chu L Y . Soft. Matter., 2008,4. doi: 10.1039/b804611e https://www.ncbi.nlm.nih.gov/pubmed/19657472

pmid: 19657472
[53]
Liu Z , Nomura N , Nishioka D , Hotta Y , Matsuo T , Oshima K , Yanaba Y , Yoshikawa T , Ohara K , Kohara S , Takewaki T , Okubo T , Wakihara T . Chem.Commun.(Camb), 2015,51:12567.
No related articles found!
Viewed
Full text


Abstract

Continuous Flow Synthesis of Zeolites