中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 851-860 DOI: 10.7536/PC191003 Previous Articles   

• Review •

Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties

Xiaojian Li1, Haijun Zhang1,**(), Saisai Li1, Jun Zhang1, Quanli Jia2, Shaowei Zhang1   

  1. 1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
    2. Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
  • Received: Revised: Online: Published:
  • Contact: Haijun Zhang
  • Supported by:
    the National Natural Science Foundation of China(51872210); the National Natural Science Foundation of China(51672194); the Key Program of Natural Science Foundation of Hubei Province, China(2017CFA004); the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No. T201602).()
Richhtml ( 61 ) PDF ( 2894 ) Cited
Export

EndNote

Ris

BibTeX

Frequent offshore oil spill accidents, industrial oily sewage and the indiscriminate disposal of urban oily sewage have increasingly serious impacts on human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution, but also lead to waste of limited resources. Therefore, how to efficiently and environmentally solve the problem of oily sewage has great significance. Physical filtration/adsorption is considered to be an efficient and environmentally friendly separation method. Based on bionics principle, many superoleophilic hydrophobic materials and superhydrophilic oleophobic materials which can be used for selectively physical oil-water separation have been prepared. The superoleophilic hydrophobic materials are easy to be polluted by oil, resulting in low reuse ability. In contrast, environment-friendly and self-cleaning superhydrophilic oleophobic materials usually have high reuse ability, thus having broad application prospects for oil-water separation. Based on the difference of base materials, the present paper mainly statues the recent advances and summarizes the advantages and disadvantages of metal and polymer-based superhydrophilic oleophobic materials, and the general direction and emphasis of superhydrophilic oleophobic materials are also proposed.

Contents

1 Introduction
2 Metal-based superhydrophilic oleophobic filtering material

2.1 Externally assembled metal-based superhydrophilic oleophobic filtering material

2.2 In-situ growth metal-based superhydrophilic oleophobic filtering material

3 Polymer-based superhydrophilic oleophobic material

3.1 Polymer-based superhydrophilic oleophobic filtering material

3.2 Polymer-based superhydrophilic oleophobic adsorbent material

4 Conclusion and outlook
Fig. 1 Natural special wettability phenomena:(a) Ruellia devosiana;(b) lotus leaf;(c) shark skin[20,21]
Fig. 2 Schematic illustration of contact angle of a liquid drop on a solid surface:(a) Young model in air;(b) Young model in water;(c) Cassie model.
Fig. 3 Schematic diagram of stainless steel mesh modified by layer-by-layer self-assembly method[45]
Fig. 4 The contrast SEM images of the original stainless steel mesh and the coated membrane(a. stainless steel mesh-304; b. WO3 coating; c. magnified image of b; d. WO3/TiO2 composite layer, 400 ℃/5 h)[48]
Fig. 5 Schematic illustration of modified copper mesh by TiO2/CuO double coating:(a) electrochemical anodization of the surfaces of copper meshes to produce Cu(OH)2 nanoneedle arrays(NNA);(b) deposition of Ti(OH)4 layers by sol-gel layer-by-layer self-assembly process on the Cu(OH)2 nanoneedle arrays-coated copper meshes, and(c) calcination of Ti(OH)4/Cu(OH)2 dual coatings to obtain the nanostructured TiO2/CuO dual-coated copper meshes[51]
Fig. 6 Schematic diagram of TiO2@CuO nanowire structure modified copper mesh prepared by two-step method(Chemical oxidation of copper meshes to form Cu(OH)2 nanowire array(NWA), and loading of TiO2-P25 on the Cu(OH)2 nanowire array-coated copper meshes to produce TiO2@CuO nanowire array coatings via hydrothermal crystallization[52])
Fig. 7 Schematic illustrating the formation process of the nanofibrous skin layers[59]
Fig. 8 TEM images of tunicate cellulose nanocrystal (a) and palygorskite(b), schematic illustration for the preparation of tunicate cellulose nanocrystal/palygorskite membrane(c), and SEM image of the surface (d) and cross section(e) of tunicate cellulose nanocrystal/palygorskite membrane[60]
[1]
Nistico R, Franzoso F, Cesano F, Scarano D, Magnacca G, Parolo M E, Carlos L . ACS Sustainable Chemistry & Engineering, 2017,5(1):793.
[2]
张俊 (Zhang J), 韩磊(Han L), 曾渊(Zeng Y), 田亮(Tian L), 张海军(Zhang H J). 化学进展( Progress in Chemistry), 2019,31(01):146. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180447
[3]
Joye S B . Science, 2015,349(6248):592. https://www.ncbi.nlm.nih.gov/pubmed/26250675

pmid: 26250675
[4]
Bi Y B, Han L, Zheng Y F, Guan Y P, Zhang H J, Ge S T, Wang H F, Jia Q L, Zhang Y X, Zhang S W . ACS Applied Materials & Interfaces, 2018,10(32):27416. https://www.ncbi.nlm.nih.gov/pubmed/30036035

doi: 10.1021/acsami.8b05878 pmid: 30036035
[5]
Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C . Environmental Science Processes & Impacts, 2015,17(7):1201. https://www.ncbi.nlm.nih.gov/pubmed/26089295

pmid: 26089295
[6]
Ge J, Zhao H Y, Zhu H W, Huang J, Shi L A, Yu S H . Advanced Materials, 2016,28(47):10459. https://www.ncbi.nlm.nih.gov/pubmed/27731513

pmid: 27731513
[7]
李文涛 (Li W T), 雍佳乐(Yong J L), 杨青(Yang Q), 陈烽(Chen F), 方瑶(Fang Y), 侯洵(Hou X). 物理化学学报( Acta Physico-Chimica Sinica), 2018,34(5):456.
[8]
Xia B B, Liu H T, Fan Y N, Chen T C, Chen C, Wang B . Materials Design, 2017,135: 51. https://linkinghub.elsevier.com/retrieve/pii/S0264127517308158

doi: 10.1016/j.matdes.2017.08.057
[9]
Wang Z, Guo Z . Chemical Communications, 2017,53(4):12990. http://xlink.rsc.org/?DOI=C7CC07436K

doi: 10.1039/C7CC07436K
[10]
Chen L, Guo Z, Liu W . Journal of Materials Chemistry A, 2017,5(28):14480. http://xlink.rsc.org/?DOI=C7TA03248J

doi: 10.1039/C7TA03248J
[11]
Tang X, Shen C, Zhu W, Zhang S, Xu Y, Yang Y, Gao M, Dong F . Royal Society of Chemistry Advances, 2017,7(48):30495.
[12]
Emelyanenko A M, Boinovich L B, Bezdomnikov A A, Chulkova E V, Emelyanenko K A . ACS Applied Materials Interfaces, 2017,9(28):24210. https://www.ncbi.nlm.nih.gov/pubmed/28657289

pmid: 28657289
[13]
Zhu Y Z, Wang D, Jiang L, Jin J . NPG Asia Materials, 2014,6: 5.
[14]
Liu K S, Tian Y, Jiang L . Progress in Materials Science, 2013,4(58):503.
[15]
Drelich J, Chibowski E, Meng D D . Soft Matter, 2011,21(7):9804.
[16]
Zhang W B, Shi Z, Zhang F, Liu X, Jin J, Jiang L . Advanced Materials, 2013,14(25):2071.
[17]
Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L . Advanced Materials, 2009,6(21):665.
[18]
Song J L, Lu Y, Luo J, Huang S, Wang L, Xu W J, Parkin I P . Advanced Materials Interfaces, 2015,15(2):1500350.
[19]
屈孟男( Qu M N),马利利(Ma L L), 何金梅(He J M), 袁明娟(Yuan M J), 姚亚丽(Yao Y L), 刘向荣(Liu X R) . 材料导报( Materials Reports), 2017, ( 19):155.
[20]
Darmanin T, Guittard F . Progress in Polymer Science, 2014,39(4):656. https://linkinghub.elsevier.com/retrieve/pii/S007967001300124X

doi: 10.1016/j.progpolymsci.2013.10.003
[21]
Bixler G D, Bhushan B . Nanoscale, 2013,5(17):7685. 86802f62-1046-4a1c-91b1-786fe5da2db8http://dx.doi.org/10.1039/c3nr01710a

doi: 10.1039/c3nr01710a
[22]
Bixler G D, Bhushan B . Journal of Colloid Interface Science, 2013,393: 384. https://www.ncbi.nlm.nih.gov/pubmed/23266029

pmid: 23266029
[23]
Ensikat H J, Ditsche-Kuru P, Neinhuis C . Beilstein Journal of Nanotechnology, 2011,2: 152. https://www.ncbi.nlm.nih.gov/pubmed/21977427

pmid: 21977427
[24]
Jiang T, Guo Z, Liu W . Journal of Materials Chemistry A, 2015,3: 1811.
[25]
Liu Y, Qu R, Zhang W . ACS Applied Materials Interface, 2019,11: 20545.
[26]
Koch K, Blecher I C, Kcenig G . Functional Plant Biology, 2009,36(4):339.
[27]
Zorba V, Stratakis E, Barberoglou M . Advanced Materials, 2008,20: 4049.
[28]
Xue Z, Cao Y, Liu N, Feng L, Jiang L . Journal of Materials Chemistry A, 2014,2(8):2445. http://xlink.rsc.org/?DOI=C3TA13397D

doi: 10.1039/C3TA13397D
[29]
Cheng Q, Li M, Zheng Y, Su B, Wang S, Jiang L . Soft Matter, 2011,7(13):5948.
[30]
Liu K, Yao X, Jiang L . Chemical Society Reviews, 2010,39(8):3240. https://www.ncbi.nlm.nih.gov/pubmed/20589267

doi: 10.1039/b917112f pmid: 20589267
[31]
袁静( Yuan J),廖芳芳(Liao F F), 郭雅妮(Guo Y N), 梁丽芸(Liang L Y) . 化学进展( Progress in Chemistry), 2019,31(01):156. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180313
[32]
Pan Y L, Liu L M, Zhang Z J, Huang S C, Hao Z, Zhao X Z . Chemical Engineering Journal, 2019,378: 122178.
[33]
Yang J, Yin L, Tang H, Song H, Gao X, Liang K, Li C . Chemical Engineering Journal, 2015,268: 245. https://linkinghub.elsevier.com/retrieve/pii/S1385894715001023

doi: 10.1016/j.cej.2015.01.073
[34]
Li F, Wang Z, Huang S . Advanced Functional Materials, 2018,28(20):1706867.
[35]
Naseem S, Wu C M, Xu T Z, Lai C C, Rwei S P . Polymers, 2018,10(7):746.
[36]
Tian D, Zhang X, Tian Y, Wu Y, Wang X, Zhai J, Jiang L . Journal of Materials Chemistry, 2012,22(37):19652.
[37]
Darmanin T, Guittard F . Journal of Colloid and Interface, 2013,408(408):101.
[38]
曾新娟( Zeng X J), 王丽(Wang L), 皮丕辉(Pi P H), 程江(Chen J), 文秀芳(Wen X F), 钱宇(Qian Y) . 化学进展( Progress in Chemistry), 2018,30(1):73. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170828
[39]
Wang C F, Tzeng F S, Chen H G, Chang C J . Langmuir, 2012,28(26):10015. https://www.ncbi.nlm.nih.gov/pubmed/22679902

pmid: 22679902
[40]
Ganne A, Maslakov K I, Gavrilov A I . Surface Innovations, 2017,5(3):154.
[41]
Choi H, Stathatos E, Dionysiou D D . Desalination, 2007,202: 199.
[42]
Chong M N, Jin B, Chow C W K, Saint C P . Water Research, 2010,44(10):2997. https://www.ncbi.nlm.nih.gov/pubmed/20378145

doi: 10.1016/j.watres.2010.02.039 pmid: 20378145
[43]
Zhang L, Zhong Y, Cha D, Wang P . Scientific Reports, 2013,3(1):2326.
[44]
Gunatilake U B, Bandara J . Chemosphere, 2017,171: 134. https://www.ncbi.nlm.nih.gov/pubmed/28013074

pmid: 28013074
[45]
Hou K, Zeng Y, Zhou C, Chen J, Wen X, Xu S, Cheng J, Lin Y, Pi P . Applied Surfcae Science, 2017,416: 344.
[46]
斯芳芳( Si F F), 张靓(Zhang L), 赵宁(Zhao N), 陈莉(Chen L), 徐坚(Xu J) . 化学进展( Progress in Chemistry), 2011,23(9):1831. http://manu56.magtech.com.cn/progchem/CN/Y2011/V23/I9/1831
[47]
Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L . Advanced Materials, 2011,23(37):4270. https://www.ncbi.nlm.nih.gov/pubmed/22039595

pmid: 22039595
[48]
Wang B, Chen C, Liu H, Xia B, Fan Y, Chen T . Thin Solid Films, 2018,665: 9. https://linkinghub.elsevier.com/retrieve/pii/S0040609018305789

doi: 10.1016/j.tsf.2018.08.039
[49]
Brown P S, Bhushan B . Scientific Reports, 2015,5(1):8701.
[50]
Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L . Advanced Materials, 2013,25(30):4192. https://www.ncbi.nlm.nih.gov/pubmed/23788392

pmid: 23788392
[51]
Yuan S, Chen C, Raza A, Song R, Zhang T J, Pehkonen S O, Liang B . Chemical Engineering Journal, 2017,328: 497. https://linkinghub.elsevier.com/retrieve/pii/S1385894717312238

doi: 10.1016/j.cej.2017.07.075
[52]
Ji J, He H, Chen C, Jiang W, Raza A, Zhang T J, Yuan S . ACS Sustainable Chemistry Engineering, 2018,7(2):2569.
[53]
Lai H, Yu X, Liu M, Cheng Z . Applied Surface Science, 2018,448: 241. https://linkinghub.elsevier.com/retrieve/pii/S0169433218310729

doi: 10.1016/j.apsusc.2018.04.110
[54]
Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S . Chemical Engineering Journal, 2016,301: 249.
[55]
Wei W, Sun M, Zhang L, Zhao S, Wu J, Wang J . Separation and Purification Technology, 2017,189: 32.
[56]
Liu N, Lin X, Zhang W, Cao Y, Chen Y, Feng L, Wei Y . Scientific Reports, 2015,5(1):9688.
[57]
Zhang W, Shi Z, Zhang F . Advanced Materials, 2013,25(14):2071. https://www.ncbi.nlm.nih.gov/pubmed/23418068

doi: 10.1002/adma.201204520 pmid: 23418068
[58]
Chen P C, Xu Z K . Scientific Reports, 2013,3(1):2776.
[59]
Ge J, Zong D, Jin Q, Yu J, Ding B . Advanced Functional Materials, 2018,28(10):1705051.
[60]
Zhan H, Zuo T, Tao R, Chnag C . ACS Sustainable Chemistry Engineering, 2018,6(8):10833.
[61]
Zhang X, Wang C, Liu X, Wang J, Zhang C, Wen Y . Journal of Cleaner Production, 2018,193: 702.
[62]
Ning C, Qian L, Jin L, Yong W, Bai Y, Szunerits S, Boukherroub R . Chemical Engineering Journal, 2017,326: 17. https://linkinghub.elsevier.com/retrieve/pii/S1385894717308665

doi: 10.1016/j.cej.2017.05.117
[63]
Wan W, Lin Y, Prakash A, Zhou Y . Journal of Materials Chemistry A, 2016,4(48):18687. http://xlink.rsc.org/?DOI=C6TA07211A

doi: 10.1039/C6TA07211A
[64]
Shen Y, Li L, Xiao K, Xi J . ACS Sustainable Chemistry Engineering, 2016,4(4):2351. https://pubs.acs.org/doi/10.1021/acssuschemeng.6b00030

doi: 10.1021/acssuschemeng.6b00030
[65]
Gupta S, Tai N H . Journal of Materials Chemistry A, 2016,4(5):1550. http://xlink.rsc.org/?DOI=C5TA08321D

doi: 10.1039/C5TA08321D
[66]
Fard A K, Rhadfi T, McKay G, Al-Marri M, Abdala A, Hilal N, Hussien M A . Chemical Engineering Journal, 2016,293(293):90.
[67]
Cao X, Zang L, Bu Z, Sun L, Guo D, Wang C . Journal of Materials Chemistry A, 2016,4(27):10479.
[68]
Wang G, He Y, Wang H, Zhang L, Yu Q Y, Peng S S, Wu X D, Ren T H, Zeng Z X, Xue Q J . Green Chemistry, 2015,17(5):3093.
[69]
Chen J J, Zhang Y X, Chen C, Xu M Y, Wang G, Zeng Z X, Wang L P, Xue Q J . Macromolecular Materials and Engineering, 2017,302(9):1700086.
[70]
Su C, Yang H, Song S, Lu B, Chen R . Chemical Engineering Journal, 2017,309: 366.
[1] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[2] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[3] Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang. Selective Oil/Water Separation Materials [J]. Progress in Chemistry, 2019, 31(1): 134-143.
[4] Jing Yuan, Fangfang Liao, Yani Guo, Liyun Liang. Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation [J]. Progress in Chemistry, 2019, 31(1): 144-155.
[5] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[6] Yang Wolong, Ji Xianbing, Xu Jinliang. Superhydrophilic Surfaces: From Nature to Biomimetics to Application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
[7] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[8] Si Fangfang, Zhang Liang, Zhao Ning, Chen Li, Xu Jian. Superhydrophilic Surfaces: Progress in Preparation Method and Application [J]. Progress in Chemistry, 2011, 23(9): 1831-1840.
[9] Liu Xiangmei He Junhui. Progress in Antifogging Technology —— from Surface Engineering to Functional Surfaces [J]. Progress in Chemistry, 2010, 22(0203): 270-276.